BOUNDARY LAYER INFLUENCE ON TRAPPED LEE WAVES

Ivana Stiperski DHMZ

ivana.stiperski@cirus.dhz.hr

TRAPPED LEE WAVES

Scorer (49') was the first to set the theory When Scorer parameter $I^2(z)$ decreases sharply with height

$$l^{2} = \frac{N^{2}}{U^{2}} - \frac{1}{U} \frac{\partial^{2} U}{\partial z^{2}}$$

→Increase of horizontal windspeed with height or/and

 \rightarrow Decrease of potential temperature with height

Non-hydrostatic standing waves

- \rightarrow Superposition of vertically propagating and reflected wave
- \rightarrow Vertical phase lines
- → Amplitude is evanescent
- \rightarrow Energy propagates in the horizontal
- \rightarrow Extend far downstream with no surface friction

ABL EFFECTS

Upstream phase shift of the wind in the BL compared to free atmos. : → Modulates flow divergence → Absorbs incident wave + advances phase of reflected wave = exponential decay (Smith et al. 06'; linear model)

Shortening the wavelength, decrease of wave amplitude (Smith et al. 06')

Wave absorption (Jiang et al. 06'):

Decay depends on surface roughness and heat flux

- → stronger for rougher surfaces and surface cooling = nocturnal stable BL more effective in absorbing waves
- \rightarrow stagnant layer shows strongest attenuation (especially in mountain valleys)

BOUNDARY LAYER SEPARATION

ABL thickens and lifts of the surface Highly turbulent recirculating regions → **rotors** underneath the wave crests

Adverse wave induced pressure gradients + **ABL** surface drag produce realistic rotors (Doyle & Durran 02'; Vosper et al. 06')

 \rightarrow positive horiz. vorticity the same sign as in ABL

Transient rotors can develop also in **free slip** → negative horiz. vorticity produced by waves

Two types rotors (Hertenstein & Kuettner 05'): trapped waves & hydraulic jump. Additionally: undular hydraulic jumps (Jiang et al. 07')

Strong **coupling** between overlying trapped waves and underlying ABL (Doyle & Durran 02'): Sensitivity to **surface friction** → increase: decrease in rotor strength Sensitivity to **surface heat flux**

→ positive: increase in depth and turbulence but decrease in strength

BORA ROTORS

Mostly associated with trapped waves

Belušić et al.(07');Grubišić & Orlić (07');Gohm & Mayr (08');Prtenjak & Belušić (09')

In the lee of Southern Velebit: undular hydraulic jump rotor (Stiperski et al. 10') Dependent on the evolution of the underlying ABL (night time) and roughness

TRAPPED LEE WAVES OVER DOUBLE MOUNTAINS

LINEAR INTERFERENCE THEORY (e.g. Scorer 97')

Constructive (A2=2*A1) & destructive (A2=0) interference

determined by the ratio of valley width V to intrinsic lee wave wavelength λs

NONLINEARITY & T-REX (Gyüre & Jànosi 03'; Grubišić & Stiperski 09')

- \rightarrow No doubling or cancellation
- → Wavelength change

NUMERICAL SIMULATIONS

→ **MODEL**: NRL COAMPS

Compressible, non-hydrostatic, 2D, irrotational

→ **RESOLUTION**

ABL: dz= 30 -100m, dx=400m

→ LOWER BC:

1. FREE SLIP (fS)
2. NO SLIP (nS)
Surface roughness zo = 0.1 m
TKE 1.5: Mellor Yamada (82')
Vertical fluxes of horizontal
momentum (Louis 79'; Louis et al. 82')

Heat & moisture fluxes = 0

→ OROGRAPHY

$$h(x) = \frac{H_1 \cdot a^2}{(x + V/2)^2 + a^2} + \frac{H_2 \cdot a^2}{(x - V/2)^2 + a^2}$$

H1= H2 =300-1500 m
V = 30 - 65 km
a = 5 km

NUMERICAL SIMULATIONS

3 SETS OF SIMULATIONS **fS** – free slip BC **fnS** – free slip BC but profile modified by ABL **nS** – no slip BC but profile like in fS

Intrinsic horizontal wavelength (λs)
=in the lee of a single mountain
Wave drag (D)
Amplitude (A1 & A2)
Minimal horizontal wind speed (Umin)
→Averaged over stationary period

TRAPPED LEE WAVE INTERFERENCE

50

Flow in the valley doesn't feel 2nd mountain (Lee et al. 87')

Free slip (fS) interference evident in A2 and D No interference in U2min

Linear theory

→ correct for wavelength: $Constructive <math>n^*\lambda s$ λ Destructive $(2n-1)/2^*\lambda s$ → incorrect for amplitude: A2≠0; 2*As 2 a) 2 a)

'ABL - Current Problems & Advancements',1.5-day Mini-Workshop on ABL, Zagreb,25/02 at 10h, Dept. of Geophysics, Zagreb

 $\lambda s = 28 \text{ km}$

SURFACE FRICTION & INTERFERENCE

In fS, fnS & nS simulations:

- \rightarrow Linear prediction for interference holds
- \rightarrow Amplitude oscillations: std(A2/As) the same

In fnS and nS simulations:

- \rightarrow Change in intrinsic wavelength λ s (A2)
- → Alternative intrinsic wavelength for surface pressure (D)
- = Decoupling of interference evident in A2 and D

In nS simulations:

- → The interference in the BL evident in U2min develops
- \rightarrow Coupling between A2 and U2min

NONLINEARITY

1. WEAKLY NONLINEAR (370m<H<500m)

→Rotors in the valley and for constructive interference

→For destructive interference flow is linear (no rotors)

 \rightarrow Critical mountain for rotors under constructive int. same as for single

2. MODERATELY NONLINEAR (500m<H<1000m)

 \rightarrow Flow in the valley weaker than for single mountain

 \rightarrow Rotors form under destructive int.

 \rightarrow Rotors under constructive int. only as strong as for single mountain

3. HIGHLY NONLINEAR (H>1000m)

→ Rotors within the valley have constant strength

 \rightarrow In the lee of second peak stronger than for single mountain

ABL ATTENUATION vs. COMPLETE DESTRUCTIVE INTERFERENCE

Waves **almost completely** cancel out in the lee of second peak for specific critical H2<H1 This occurs **irrespective** of surface friction

The amount of amplitude reduction is the **same** (~80%) Rotors are more attenuated for lower mountains

CONCLUSIONS

INFLUENCE OF ABL ON TRAPPED WAVES:

→upstream phase shift of the BL wind
→exponential decay of trapped waves downstream
→reduction in wavelength and wave amplitude
Stronger friction: more wave attenuation, weaker rotors
Positive heat flux: less wave attenuation, weaker rotors extending higher

INFLUENCE OF ABL ON WAVE INTERFERENCE:

 \rightarrow resonant wavelengths agree with linear theory

2n*λs	n=2,3,4,	constructive
(2n-1)/2 *λs	n=2,3,4,	destructive

amplitudes do not but

 \rightarrow decoupling of interference in D and A2 due to ABL change in profile

 \rightarrow development of interference in Umin

CONCLUSIONS

IN THE VALLEY:

 \rightarrow weaker rotors in the nonlinear regimes

 \rightarrow for highly nonlinear regime: rotor strength is constant with H

IN THE LEE OF THE SECOND MOUNTAIN:

 \rightarrow Constructive interference does not enhance rotors and rotors do not form for lower mountains than for single mountain

 \rightarrow Destructive interference strongly diminishes rotor strength

 \rightarrow Complete destructive interference also causes strong attenuation of waves downstream

REFERENCES

Belušić D, Žagar M, Grisogono B. 2007. Numerical simulation of pulsations in the bora wind. Q. J. R. Meteorol. Soc. 133: 1371-1388.

Doyle, J.D., and D.R. Durran, 2004: Recent developments in the theory of atmospheric rotors. Bull. Amer. Meteor. Soc., 85, 337-342.

- Gohm A, Mayr GJ, Fix A, Giez A. 2008. On the onset of bora and the formation of rotors and jumps near a mountain gap. *Q. J. R. Meteorol. Soc.* **134:** 21-46.
- Grubišić, V., and M. Orlić, 2007: Early Observations of Rotor Clouds by Andrija Mohorovičić. Bull. Amer. Meteor. Soc., 88, 693–700.
- Grubišić, V., and I. Stiperski, 2009: Lee-wave resonances over double bell-shaped obstacles. J. Atmos. Sci., 66, 1205-1228.
- Gyüre, B., and I.M. Jánosi, 2003: Stratified flow over asymmetric and double bell-shaped obstacles. *Dyn. Atmos. Oceans*, **37**, 155-170.
- Hertenstein, R.F., and J.P. Kuettner, 2005: Rotor types associated with steep lee topography: influence of the wind profile. *Tellus*, **57**, 117-135.
- Jiang, Q., J.D. Doyle, and R.B. Smith, 2006: Interaction between trapped lee waves and boundary layers. *J. Atmos. Sci.*, **63**, 617-633.
- Jiang, Q., J.D. Doyle, S. Wang, and R.B. Smith, 2007: On boundary layer separation in the lee of mesoscale topography. *J. Atmos. Sci.*, **64**, 401-420.
- Jiang, Q., R.B. Smith, and J.D. Doyle, 2008: Impact of the atmospheric boundary layer on mountain waves. *J. Atmos. Sci.*, **65**, 592-608.
- Lee, J.T., R.E. Lawson, and G.L. Marsh, 1987: Flow visualization experiments on stably stratified flow over ridges and valleys. *Meteor. Atmos. Phys.*, **37**, 183-194.
- Prtenjak, M.T., and D. Belušić, 2009: Formation of reversed lee flow over the north-eastern Adriatic during bora. *Geofizika*, **26**, 145-155.
- Scorer, R.S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 41-56.
- Scorer, R.S., 1997: Dynamics of Meteorology and Climate. Wiley, 686 pp.
- Smith, R.B., S. Skubis, J.D. Doyle, A.S. Broad, C. Kiemle, and H. Volkert, 2002: Mountain Waves over Mont Blanc: Influence of a Stagnant Boundary Layer. *J. Atmos. Sci.*, **59**, 2073-2092.
- Smith, R.B., Q. Jiang, and J.D. Doyle, 2006: A theory of gravity-wave absorption by a boundary layer. J. Atmos. Sci., 63, 774-781.
- Stiperski, I., B. Ivančan-Picek, V. Grubišić and A. Bajić: The complex bora flow in the lee of Southern Velebit.
- Vosper, S.B., P.F. Sheridan, and R. Brown, 2006: Flow separation and rotor formation beneath two-dimensional trapped lee waves. *Quart. J. Roy. Meteor. Soc.*, 132, 2415-2438.