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ABSTRACT

Winds through the Vratnik Pass, a mountain gap in the Dinaric Alps, Croatia, are
polarized along the gap axis that extends in the northeast-southwest direction.
Although stronger northeasterly wind at the Vratnik Pass is frequently related to
the Adriatic bora wind, especially at the downstream town of Senj, there are
many cases when wind at Senj is directionally decoupled from wind at the
Vratnik Pass. A cluster analysis reveals that this decoupling is sometimes related
to lower wind speeds or shallow southeasterly sirocco wind along the Adriatic,
but in many cases the bora blows over a wider region, while only Senj has
different wind direction. Several mechanisms can be responsible for the latter
phenomenon, including the formation of a lee wave rotor. A numerical model
simulation corroborates the decoupling caused by a rotor for a single case.

The prevalence of northeasterly winds at the Vratnik Pass during southeasterly
sirocco episodes is another result that challenges the current understanding. It is
shown that at least in one of the episodes, this phenomenon is related to a
secondary mesoscale low-pressure center in the eastern lee of the Apennines
that forms as a subsystem of a broader Genoa cyclone.

Less frequent southwesterly winds through the gap are predominantly related to
the thermal sea-breeze and anabatic circulations that are sometimes

superimposed on the geostrophic wind.
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1. Introduction

Mean wind patterns over the Adriatic were described decades ago (e.g. Makjani¢
1978), and classified into four main categories: northeasterly bora, southeasterly
Adriatic sirocco (jugo), northwesterly etesian and local thermal circulations (e.g.
Prtenjak and Grisogono 2007; Pasaric¢ et al. 2009). PandZi¢ and Likso (2005)
used principal component analysis to classify wind observations along the entire
eastern Adriatic coast. Their analysis resulted in 11 wind types that could be
condensed into the same four categories as above with an additional near-calm
wind type. Local complexities of these flow patterns have been addressed only
recently, with the advance and accessibility of limited-area numerical models
(e.g. Pasaric et al. 2007; Grisogono and BelusSi¢ 2009; Klai¢ et al. 2009a; Prtenjak
and BelusSi¢ 2009; Prtenjak et al. 2010). Even more complex situations, with
weak to moderate synoptic pressure gradients that are modified by local thermal
circulations at the northern Adriatic coast, have been recently analysed using
measurements (e.g. Orli¢ et al. 1988; Prtenjak 2003; Prtenjak and Grisogono
2007) and numerical modeling (e.g. Nitis et al. 2005; Prtenjak et al. 2006; 2008).
A multitude of spatial flow patterns is possible under those conditions due to

variable wind direction and highly complex terrain.

The dominant wind at the northeastern Adriatic is bora - for example, bora
blows 177 days annually in the town of Senj (e.g. Yoshino 1976; Makjani¢ 1978;
see Fig. 1 for the location). Bora is most frequent in the cold part of the year
when persistent anticyclones over the northeastern Europe or cyclones over the

Adriatic and Mediterranean ensure the supply of cold continental northeasterly
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air. Bora is a downslope windstorm whose basic characteristics follow the
hydraulic flow dynamics with supercritical regions in the mountain lee that are
dissipated in hydraulic jumps further downstream (Smith 1987). The upper flow
dividing streamline descends in the lee as a result of the presence of an inversion
just above the mountain top height or due to mountain wave breaking in the lee
(Klemp and Durran 1987). These mesoscale mechanisms generate large cross-
mountain pressure gradient and cause acceleration of wind such that the mean
speeds in the lee reach 30 m s! with gusts surpassing 60 m s (e.g. Jiang and
Doyle 2005; Belusi¢ and Klai¢ 2006; Gohm et al. 2008). The bora jets can extend
over the entire width of the Adriatic Sea and reach its western coast (e.g. Dorman
et al. 2006; Signell et al. 2010). Bora influences the coastal areas, sea state and
circulation, sea and land traffic, tourism and agriculture. It is associated with
several specific dynamical features, such as wave-induced rotors, quasi-periodic
pulsations of gusts, and potential vorticity banners. It has therefore attracted
considerable interest over the years, which has resulted in a large number of
studies (see the recent review by Grisogono and Belusi¢ (2009) and references

therein).

The terrain complexity is evident along the Dinaric Alps, the mountain range that
extends along the eastern Adriatic coast separating it from the interior
continental region (Fig. 1). The Dinaric Alps have several gaps that influence the
spatial flow patterns, particularly during the bora wind (e.g. GrubiSi¢ 2004;
Belusi¢ and Klai¢ 2006; Dorman et al. 2006; Gohm et al. 2008; Grisogono and
Belusi¢ 2009; Signell et al. 2010). Despite their importance, little work has been

done on the examination of flow patterns through these mountain gaps,
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especially over an extended period of time. This study presents the first wind
measurements at the Vratnik Pass (Fig. 1) that were collected over a period of
about nine months. The dataset length allows for classification of wind regimes
at the Vratnik Pass and the nearby coastal and island stations, which is
performed using a cluster analysis. Additionally, a preliminary data analysis has
indicated several unexpected flow characteristics, such as directional decoupling
between the Vratnik Pass and Senj during bora (Vecenaj et al. 2011). These
situations are captured well by the current classification technique, which
enables a more general perspective on the synoptic and mesoscale conditions
that generate such situations.

The paper is organized as follows: Section 2 presents the data and main results
from basic data analysis, which reveals and quantifies some of the intricacies of
the local flow characteristics; Section 3 describes the cluster analysis technique;
Section 4 presents and discusses the results of clustering, relates them to
dominant synoptic conditions and undertakes numerical modeling to resolve the
flow complexities that seem unexpected without proper data; and Section 5

concludes the study, leaving several open questions for further research.

2. Data and basic analysis

The first wind measurements at the Vratnik Pass over an extended time period,
October 2004 - June 2005, provide a unique opportunity for analysis of wind
regimes through a mountain gap. The Vratnik Pass is a pronounced mountain

gap located in the northern part of the Dinaric Alps (Fig. 1). It is well known for
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its relation to the bora wind, since it is located upstream of the town of Senj that
is famous for its very frequent and persistent bora cases (Poje 1992). The three
wind components were recorded at 9.5 m above ground using a Gill WindMaster
sonic anemometer with 4-Hz sampling frequency (BeluSi¢ and Klai¢ 2006).
Simultaneously, the same type of instrument was located in Senj at 13 m above
ground (Klai¢ et al. 2009b), which enables the analysis of the relationship
between the winds at the Vratnik Pass and Senj. The Senj sonic anemometer was
mounted on a 3-m mast on the roof of the 10-m tall Senj sea-port captaincy
building. It was installed in a location different to the standard Senj weather
station, because the standard station is sheltered from the bora wind directions
(Klai¢ et al. 2009b). There were several gaps in the measurements at the Vratnik
Pass, mostly shorter in duration except for the one that lasted from late March to
early May 2005. Since the measurements were not gathered in the period from
July to September, the situations with etesian winds, which appear during the

warm part of the year, will not be taken into account in the present analysis.

We use two additional stations in the local area to provide supplementary
information about the flow patterns. These two stations are taken as far away
from the coast as possible on an approximately northeast-southwest line
connecting them with the Vratnik Pass and Senj (Fig. 1). The reason for the latter
will become obvious below, while the distance from the coast is needed to relate
the flow patterns at the Vratnik Pass and Senj to the overall larger-scale wind
patterns over the northeastern Adriatic. Mali LoSinj is obviously most suited for

that geographically, but the limitation is that the anemometers in Mali LoSinj and
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Rab are sheltered at the east and between northeast and south, respectively

(Croatian Meteorological and Hydrological Service, personal communication).

In the following, the terms ‘bora’ and ‘northeasterly wind” will sometimes be
used interchangeably for convenience, disregarding the fact that northeasterly
wind is a broader category because some of the northeasterly winds are of
thermal origin, unlike the currently accepted dynamical origin of bora (see
Grisogono and BeluSi¢ 2009). The wind roses for the two main stations, the
Vratnik Pass and Senj, are depicted in Fig. 2. Winds at the Vratnik Pass are
markedly bimodal and can be classified into northeasterly bora with directions
from 30 - 90°, and southwesterly winds with directions ranging from 210 -
270°. This polarization is a natural consequence of the geographical orientation
of the pass. However, the relationship of these two wind regimes at the Vratnik
Pass to the known wind patterns at the coast is not known, and this is examined

in the remainder of the paper.

The wind rose at Senj shows the known predominance of the bora wind for
higher wind speeds. However, weak winds are dominantly from the southeast,
which indicates that Senj and the Vratnik Pass are directionally decoupled for
low wind speeds. Conditional wind roses at Senj shown in Fig. 3 provide
additional insight into the level of decoupling. For weak winds at the Vratnik
Pass, Senj and the Vratnik Pass are decoupled regardless of the wind direction.
Similarly, for southwesterly winds at the Vratnik Pass, Senj and the Vratnik Pass
are predominantly decoupled regardless of the wind speed. It is therefore

obvious that the coupling between Senj and the Vratnik Pass is associated
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predominantly with strong northeasterly winds, and Fig. 3 shows that the
stronger the bora at the Vratnik Pass, the stronger the coupling between Senj
and the Vratnik Pass. The coupling starts when wind speed at the Vratnik Pass

surpasses 5ms-L

It has been almost tacitly assumed in previous studies that northeasterly winds
at Senj and the Vratnik Pass are always coupled, particularly because the bora in
Senj is such a predominant wind and is clearly related to the air arriving from the
Vratnik Pass. The unexpected result here is that there are situations with weak,
moderate and sometimes even strong bora at the Vratnik Pass when Senj does
not experience bora at all (Fig. 3b, c). We will refer to these situations as

decoupled bora cases.

Figure 4 depicts different possibilities of the bora occurrence simultaneously at
the Vratnik Pass and Senj. The bora occurrence is based on wind direction only,
and is defined for both stations as wind blowing continuously during at least 3 h
from directions between 30° and 90°. This enforces a rather strict condition on
the bora occurrence, but on the other hand does not allow random wind
direction variability to be counted as a bora occurrence. Table 1 explains the
detector values used in Fig. 4. The detector value of two, indicating the bora
occurrence at the Vratnik Pass but not at Senj, i.e. the decoupled situations,
appears throughout the observational period. It should be noted that this
definition of a bora occurrence means that a decoupled episode can occur even
when wind at Senj is between 30° and 90° but lasts less than 3 h. A number of

cases with weak-to-moderate wind will naturally enter the latter category, but
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will not be given special consideration here. Understanding the structure and
mechanisms of the other decoupled situations is the primary motivation for

further analysis.

3. Clustering method

In order to gain better understanding of the local spatial wind patterns, the
winds at the four chosen stations are classified using the K-means clustering
method (e.g. Anderberg 1973). This method has been used in many different
meteorological contexts, such as for clustering of mesoscale convective systems
(e.g. Pope et al. 2009), hurricane tracks (e.g. Elsner 2003) and mesoscale wind

fields (e.g. Kaufmann and Weber 1996).

We use the standard Matlab K-means algorithm with squared Euclidian distance
between vectors at each observation location as the measure of similarity. Some
authors have suggested using wind vectors scaled by time or space averaged
winds, in order to reduce the overweighting of stations with higher wind speeds
or to remove the effects of overall scaling factors for otherwise similar spatial
wind patterns, respectively (e.g. Weber and Kaufmann 1995; Kaufmann and
Whiteman 1999; Burlando et al. 2008; Jiménez et al. 2009). We do neither for a
number of reasons. First of all, the Vratnik Pass is characterized by higher wind
speeds compared to the other stations. Since we are primarily interested in
detailed wind regimes through the Vratnik Pass and only secondary about other

stations, this natural overweighting of the Vratink Pass assists the analysis.
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Second, it will be shown later that in our case the differences between clusters
that result only from overall scaling factors may point to different physical
origins of similar wind patterns. Third, we use only four stations that are located
in the region with already known larger-scale wind patterns (Prtenjak 2003;

PandZi¢ and Likso 2005). This makes our analysis and decision-making simpler.

The latter also means that it is straightforward to visually determine the optimal
number of clusters. The cluster analysis was performed with number of clusters
increasing from two to ten and the resulting clusters were examined visually for
substantial differences. Eight clusters still brought important new information
compared to seven clusters, while increasing the number of clusters beyond
eight resulted only in splitting of certain clusters to two almost identical wind

regimes. Hence we chose eight as the optimal number of clusters in our analysis.

The reliability of the method is tested by re-running the algorithm several times.

Initial cluster centroids are randomly chosen and they always converge to the

same final clusters when the number of clusters is eight, which additionally

supports this choice for the number of clusters (e.g. Pope et al. 2009). Further

evidence of the robustness of clustering results is given in the next section.

4. Results

a. Cluster analysis

10
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The eight cluster centroids are shown in Fig. 5. They are consistent with the
results from a larger-scale classification (PandZi¢ and Likso 2005). There are
only two clusters with southwesterly flow at the Vratnik Pass (clusters 1 and 6),
while all the others are dominated by the northeasterly flow. The two clusters
with southwesterly wind account for about 29% of the total number of cases.
This agrees with the wind rose at the Vratnik Pass, which shows about 30% of

cases with southwesterly winds (Fig. 2).

Further analysis reveals that the most distant members of individual clusters are
mostly very similar to their cluster centroids both in magnitude and direction of
the wind vector at all stations. Larger differences of the most distant members
may occur in wind direction only for clusters and stations with weak winds, such
as clusters 1 and 3, and the station Senj in cluster 7. This implies that the clusters

are consistent and can be used for mapping the characteristic wind patterns.

It is possible that some of the clusters represent only transitional features with
short duration. Several different tests of duration and consistence of episodes
were performed and they agree that all clusters are predominantly composed of
well-defined episodes. Average durations of uninterrupted episodes within each
cluster are given in Table 2. Clusters 1, 2, 5 and 6 are characterized by on
average longer episodes than the other four clusters. This is somewhat
unexpected for clusters 2 and 5, because they are predominantly separated by
small to moderate differences only in the overall wind speed, i.e. the scaling

factor, and not in the direction. One would, therefore, expect numerous

11
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transitions between clusters 2 and 5 during a single bora episode - yet,

continuous episodes longer that 24 h are not rare for each of the two clusters.

Likewise, the time series of cluster categories shows that successive point-to-
point transitions are the most frequent between the same cluster categories and
account for about 90% of transitions for clusters 1, 2, 5 and 6, and about 80% of
transitions for the other four clusters. The most frequent remaining transitions
between different clusters are shown in Table 2 for each cluster category. The
latter illustrates typical time evolutions of different flow configurations. For
example, the transitions confirm that the strongest bora, cluster 5, is simply a
stronger-wind version of cluster 2, as almost all transitions to and from cluster 5
occur exclusively through cluster 2. Similarly, for southwesterly winds at the
Vratnik Pass, the stronger-wind cluster 6 is reached and left predominantly
through the weaker-wind southwesterly cluster 1. An even broader picture is
revealed when all clusters with northeasterly winds at the Vratnik Pass and Senj
are considered: clusters 3, 4, 2 and 5 form a progression of increasing
northeasterly winds at both stations. Their interrelationships are also evident
from the transitions: the weakest bora in cluster 3 can transition to either
somewhat stronger bora in cluster 4, or, as expected for weak-wind cases,
change direction and transition to the weakest southwesterly cluster 1. The
moderate bora cluster 4 can go both ways, increasing (cluster 2) or decreasing
wind speed (cluster 3), but not changing the wind direction at the Vratnik Pass
and Senj. It can also move to cluster 7, which has strong northeasterly winds at
the Vratnik Pass and moderate northeasterly winds at the two outer stations, but

very weak winds at Senj when compared with the other four northeasterly

12
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clusters. This is a somewhat different flow setup and will be discussed
separately. Finally, cluster 2 has two-way transitions with the weaker cluster 4

and, as mentioned before, the strongest cluster 5.

Cluster 8 represents the airflow pattern associated with the Adriatic sirocco
wind (e.g. Jurcec et al. 1996; Brzovi¢ and Strelec Mahovi¢ 1999). The Adriatic
sirocco frequently develops when a cyclone is located northwest of the Adriatic
Sea and, assisted by the Dinaric Alps, forces the air to move along the Adriatic
Sea from the southeast. As the cyclone propagates towards the southeast, the
sirocco over the northern Adriatic gradually transforms to the northeasterly
bora wind (e.g. Horvath et al. 2008; Pasari¢ et al. 2009). This is evident from the
cluster transitions, where cluster 8 frequently moves to the weakest bora cluster
3, which can later result in strong bora through the aforementioned progression.
It also transitions to the weakest southwesterly cluster 1, probably denoting the
cessation of main synoptic forcing over the domain of interest. On the other
hand, Table 2 indicates that neither of the other clusters frequently transition to
cluster 8, but this is due to its rare occurrence of only 3.5% of all cases. It can be
shown that the transitions for cluster 8 are two-way, so the relative majority of

transitions to cluster 8 come from clusters 1 and 3.

While different bora scenarios at the Northern Adriatic coast are relatively well
known from a multitude of previous studies (e.g. Grubisi¢ 2004; Gohm and Mayr
2005; Belusi¢ and Klai¢ 2006; Vecenaj et al. 2010; 2012), the situations with
sirocco or weak winds have received much less attention. Vukicevic¢ et al. (2005)

present an analysis of the Adriatic sirocco flow on 26 December 2004 and show

13
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that the sirocco is a rather shallow phenomenon with low-level mountain-
influenced southeasterly winds turning towards the synoptic southwesterly to
westerly flow at heights above 1 km. This agrees with Ivancan-Picek et al.
(2006), who extend the analysis to a few other sirocco cases and explain that the
predominant sirocco synoptic flow is from the southwest as a result of deep
cyclones approaching from the Atlantic to the western Mediterranean. While
bora onset is abrupt, sirocco begins and strengthens gradually. On the mesoscale,
firstly due to the Dinaric Alps stretching southeast - northwest, the mean wind
turns from southwesterly aloft to southeasterly in the boundary layer. Secondly,
easterly ageostrophic wind component toward the low pressure approaching
from the west develops by the usual wind turning in the boundary layer. Due to
these and some other characteristics of sirocco in the Adriatic, Ivancan-Picek et
al. (2006) insist that this wind should have a local name "jugo". They also find
that it usually does not extend over 2 km in depth; hence, this southeasterly flow
often cannot make it over the coastal mountains. The sirocco pattern of cluster 8
therefore seems to contradict the expectations based on the current knowledge.
While the southeasterly winds at the outer two stations are the obvious sign of
sirocco, and the easterly wind at Senj could be explained by the topographic
shadowing effects of the station used in this study, the clearly northeasterly wind
at the elevated Vratnik Pass is puzzling because it seems to oppose the
associated southwesterly geostrophic wind. In order to examine this seeming
contradiction, we study the situation from 26 - 28 December 2004 in more detail

in a later subsection using a numerical model.
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Of particular interest here is the previously raised issue about the directional
decoupling between the Vratnik Pass and Senj for northeasterly winds at the
Vratnik Pass. Figure 6 shows that these cases are predominantly related to low-
to-moderate wind speed clusters (3 and 4), to the sirocco cluster 8, or to the
rather special bora cluster 7. Weak winds are characterized by large directional
variability (e.g. BeluSi¢ and Giittler 2010; Mahrt 2011) and weak vertical
coupling (e.g. Mahrt 2010). For clusters 3 and 4, this naturally results in sporadic
occurrences of directional decoupling between the Vratnik Pass and Senj, and
also in sporadic couplings that last less than 3 h and are not considered to be
coupled cases (see Section 2). The occurrence of northeasterly wind at the
Vratnik Pass is rather unexpected for the sirocco episodes in cluster 8 and, as
already mentioned, this will be further analyzed later. However, even at this
point it is easy to understand that with predominantly southeasterly winds over
the Adriatic and northeasterly winds at the Vratnik Pass, the direction at Senj can
shift between the two directions following probably only small changes of the
overall flow pattern. As for cluster 7, a very interesting result is that the
decoupled bora cases account for about 87% of its cases (Fig. 6). This makes
cluster 7 a representative of these situations. The cluster 7 centroid has
northeasterly wind at all stations, but the difference to the usual bora cases is
that the wind magnitude at Senj is considerably smaller than at the Vratnik Pass.
Inspection of individual cluster members shows that the wind at Senj is highly
variable between different members and predominantly weak, so that a few
relatively strong northeasterly bora cases dominate the average and result in the

cluster centroid.
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Independently of this analysis, VeCenaj et al. (2011) discuss a possible lee rotor
formation with reversed winds at Senj between 0000 and 1200 UTC 5 February
2005. The current analysis shows that this exact period belongs to cluster 7, and
is immersed within a strong bora episode of cluster 2. The rotors over the
eastern Adriatic have been reported in a number of studies (BelusSic¢ et al. 2007;
GrubiSi¢ and Orli¢ 2007; Gohm et al. 2008; Prtenjak and BelusSi¢ 2009; Stiperski
et al. 2012), but no systematic knowledge exists about their characteristics and
locations. Presently, the only way to verify the hypothesis that a lee rotor
formation is responsible for the flow behavior at Senj is to reproduce the

situation with a numerical model. This is discussed in a later subsection.

b. Synoptic situation

Figure 7 depicts the mean surface synoptic situation obtained from the ERA-
Interim reanalysis (Dee et al. 2011) for each cluster. Clusters 1 and 3 are both
characterized by weak pressure gradients over the northeastern Adriatic, which
favor the development of local mesoscale thermal circulations with low wind
speeds, such as the sea/land breeze and katabatic/anabatic winds (e.g. Prtenjak
et al. 2006; 2010). Weak synoptic-scale pressure gradient force from the
southwest to northeast in cluster 1 might cause pressure-driven channeling (e.g.
Carrera et al. 2009) through the Vratnik Pass and hence contribute to the
southwesterly wind. However, cluster 1 most frequently occurs in the afternoon
hours (not shown), indicating that a large percentage of its cases are related to

mesoscale thermal circulations. MSLP for cluster 8 depicts the typical pattern
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related to the Adriatic sirocco, with the cyclone northwest of the region of

interest (e.g. Jurcec et al. 1996; Pasaric et al. 2009).

The flow pattern in cluster 6 is most frequently a consequence of an early stage
of the Genoa cyclone. It is more frequent in the afternoon hours than during the
night (not shown). It thus appears that the alignment of the geostrophic wind
with the afternoon thermal sea-breeze and anabatic circulations, together with
the related channeling, results in strong southwesterly winds at the Vratnik Pass.
The decoupling of winds at Rab from the southwesterly direction seen at all
other stations in cluster 6 is evident also in the results of PandZi¢ and Likso
(2005) for a similar wind pattern (their wind type 8). The exact reasons for this
departure are not known, but it is probably related to the complexity of the
coastal terrain (e.g. Nitis et al. 2005; Prtenjak et al. 2006). Inspection of the
individual cluster members supports the latter: when the winds at Rab and Mali
LoSinj are weak to moderate, which is most frequently the case in cluster 6, the
wind pattern is very similar to the cluster centroid. However, when the surface
wind speeds become higher, the wind direction at Rab aligns with the other
stations and becomes southwesterly, implying that the synoptic flow overcomes

the local effects.

Bora clusters (2, 4 and 5) are characterized by the typical northeasterly pressure
gradient over the Dinaric Alps. The usual distinction between the cyclonic and
anticyclonic bora (e.g. JurCec 1981; Heimann 2001) is evident here too. Cluster 5
is the representative of the cyclonic bora, with the main generating factor being

the Genoa cyclone that propagates along the Apennine peninsula towards the
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southeast. Cluster 2 represents the anticyclonic bora where the high-pressure
center located northeast of the Adriatic ensures the supply of cold air impinging
on the Dinaric Alps as the northeasterly wind. Cluster 4 is characterized by the
weakest pressure gradients among the three bora clusters and individual charts
show that it is predominantly the anticyclonic bora type, but that it can also be

related to a cyclone (not shown).

The decoupled cases in the special bora cluster 7 are probably local phenomena,
so synoptic charts do not provide much insight into their dynamics. The basic
synoptic structure seems to be a mixture of an anticyclone affecting the northern
Adriatic bora and a cyclone above the northeastern Mediterranean affecting the

southern Adriatic bora.

¢. Numerical simulations

The focus for numerical simulations is on the two puzzling clusters: cluster 7 for
bora and cluster 8 for sirocco. Both were discussed above and here we report on
the results of simulations of several cases from these two clusters. The Weather
Research and Forecasting - Advanced Research WRF (WRF-ARW) model,
version 3.3 (Skamarock et al. 2008) is used for this purpose. Initial and boundary
conditions are obtained from the ERA-Interim reanalysis, available every 6 h.
The setup consists of a number of nested domains with the outermost domain’s
grid spacing of 27 km being decreased by the factor of 3 for each nested domain.
Two simulations are presented here: the grid spacing of the innermost domain is

1 km for the first and 1/3 km for the second simulation. Two-way nesting is used
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for the first and one-way for the second simulation. All domains are centered on
the present region of interest (the locations of domains are shown in the figures
below). There are 51 vertical levels, with the layer depths gradually increasing
with height. Vertical mixing is parameterized using the Mellor-Yamada-Janji¢

scheme (Janji¢ 2002).

One of the questions raised above is about the origin of the unexpected
northeasterly wind at the Vratnik Pass during the sirocco episodes of cluster 8.
Figure 8 compares the measurements at the Vratnik Pass with the ERA-Interim
reanalysis at the point closest to the Vratnik Pass for the long sirocco episode
from 26 December - 28 December 2004. The ERA-Interim wind is persistently
from the south until the end of the sirocco episode on 28 December 2004.
Therefore, the common expectation for this case would be a persistent
southwesterly wind at the Vratnik Pass, because one could assume that a
synoptically southerly wind would be locally channeled through the gap as a
southwesterly wind (e.g. GaberSek and Durran 2006). However, the wind in the
measurements is most frequently from the northeast with only shorter
excursions to south and southwest. A similar disagreement between the
measurements and reanalyses has been noticed for a number of other episodes
as well. In order to study the cause of this discrepancy, a WRF simulation was
run from 1200 UTC 26 December - 1200 UTC 28 December 2004. Figure 8
shows the comparison of wind directions between the WRF simulation and the
measurements. Wind speeds are reproduced reasonably well by the model, but
are not shown because they are not as relevant for this analysis. The two outer

stations, Rab and Mali LoSinj, clearly indicate the existence of sirocco over the
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northern Adriatic and this is well reproduced by the model. The Vratnik Pass
wind direction is simulated rather well after 00 UTC 27 December 2004. While
the measured wind at Senj is predominantly from the southeast, the modeled
direction at Senj is closely coupled with the modeled direction at the Vratnik
Pass, particularly for larger changes of direction, and hence does not
satisfactorily reproduce the local wind at Senj. This erroneous coupling between
the Vratnik Pass and Senj winds is a common characteristic of many other model
simulations performed for this study, regardless of the episode or the changes in

the model setup. These unsuccessful simulations will not be reported here.

Since the modeled direction at the Vratnik Pass is satisfactory, we use the model
for further analysis. Two different situations are compared. The surface fields
from the ERA-Interim reanalysis and the WRF simulation at the two coarsest
grids are shown in Fig. 9 at:

(i) 00 UTC 27 December, when ERA-Interim and WRF, and to a certain extent the
measurements, agree that the wind at the Vratnik Pass is southerly, and

(ii) 06 UTC 27 December, when the measurements and WRF switch to
northeasterly flow while ERA-Interim continues to experience the southerly
flow.

The ERA-Interim spatial pattern does not change much between these two
situations. The Genoa cyclone is shown to be the main generator of sirocco over
the Adriatic and the southerly wind at the Vratnik Pass. The outermost WRF
domain shows good broad agreement with the reanalysis for both situations. The
major discrepancy is seen at 06 UTC, when a relatively small closed low-pressure

center appears at the west Adriatic coast in the lee of the Apennines only in the
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WREF simulation. The first nested domain with 9-km grid spacing provides more
detailed view of the formation of the Adriatic low. It somewhat resembles the
twin cyclone formation reported by Horvath et al. (2008), although here the
Adriatic low is on a smaller spatial scale. This low bends the isobars over the
northern Adriatic and as a result, the wind along the entire northeastern Adriatic
turns to easterly and northeasterly direction while the wind further inland
becomes easterly to southeasterly. It is this mesoscale wind pattern that forces
the channeling of northeasterly wind through the Vratnik Pass. Further details of
the flow channeling through the Vratnik Pass are seen from the two domains
with smaller grid spacing, but they do not reveal relevant new information and
are hence not shown. A similar synoptic situation, but with a more expressed
Adriatic low, is seen in the hours following the observed southwesterly flow
episode at the Vratnik Pass, thus after 20 UTC 27 December, and before the
cessation of sirocco on 28 December. The quick formation and disappearance of
the low at 00 UTC 27 December indicates that these secondary lows are transient
features. The role of orography in their formation might be partially explained by
the mechanisms suggested by Lin (2007), but the detailed analysis of these

processes is beyond the scope of this study.

Another simulation was performed for the cluster-7 episode of 5 February 2005,
in order to examine a possible rotor occurrence at Senj (Vecenaj et al. 2011) as
one of the mechanisms leading to the directional decoupling between the Vratnik
Pass and Senj. Figure 10 shows that the model correctly captures the onset and
the first few hours of flow reversal at Senj, and that the reversal lasts longer for

the domain with smaller grid spacing. It should be mentioned that this
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simulation is the only one that successfully reproduced the Vratnik Pass-Senj
decoupling, and this was achieved only after changing the nesting procedure
from two-way to one-way. This indicates the high sensitivity of these flow
features to details of the model setup, which is in accordance with the
conclusions of Gohm et al. (2008). Figure 11 depicts an example of the flow
structure during the flow reversal for the innermost domain. There are several
disconnected regions of reversed flow just downstream of the mountains that
sometimes cover the coastal areas and extend over the sea. These features are
highly variable in appearance, extent and duration. The vertical cross-section
indicates the existence of a rotor circulation above Senj. The rotor occurs under
an undular bore located downstream and below a wave-breaking region, which
agrees well with previous studies on rotor dynamics (e.g. Jiang et al. 2007; Smith
and Skyllingstad 2009; Stiperski et al. 2012). These results confirm that some of
the decoupled situations arise from local rotor circulations. A detailed analysis of

this case is left for a separate study.

5. Conclusions

First wind measurements over an extended time period at the Vratnik Pass, a
mountain gap in the Dinaric Alps, were performed from October 2004 - June
2005. Wind roses and cluster analysis reveal that the winds through the Vratnik
Pass are highly polarized and come from the two main directions that are
parallel to the axis of the gap. These flow patterns depend on the synoptic-scale
forcing, but the resulting gap flow is governed by the mesoscale pressure

gradient, in accordance with the results of GaberSek and Durran (2006).
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Quite expectedly, moderate to strong northeasterly wind is more frequent and is
usually, but not always, related to the northeasterly bora wind at the
downstream town of Senj. An unforeseen result is a large number of cases with
northeasterly winds at the Vratnik Pass that are decoupled from the winds at
Senj. While some of these cases are related to low wind speeds or a shallow
southeasterly Adriatic sirocco flow, there are a considerable number of other
cases that could not be explained easily. Even the clustering method has grouped
the latter cases into a separate cluster. The WRF-ARW model was able to
reproduce only one case of the directional decoupling, which was related to a

mountain-lee rotor.

Another unexpected result that disagrees with the previous limited knowledge is
the predominance of northeasterly wind at the Vratnik Pass during the Adriatic
sirocco episodes. Using a successful WRF-ARW simulation of one such episode,
this discrepancy is shown to be a consequence of a mesoscale low-pressure
center developing over the Adriatic and is apparently unrelated to the local

terrain surrounding the Vratnik Pass.

Southwesterly wind at the Vratnik Pass is less frequent and is largely related to
situations with very weak synoptic pressure gradient when weak mesoscale see-
breeze and anabatic circulations dominate (e.g. Prtenjak 2003). Stronger
southwesterly wind at the Vratnik Pass appears when this weak circulation is
superimposed on a geostrophic wind in the same direction. An additional

mechanism for the latter could be the generation of a large mountain wave with
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a strong southeasterly wind in the lee. These flow conditions have not been
studied previously, so further analysis is needed for understanding of the exact

mechanisms.

Several interesting dynamical and modeling problems emerge from this study.
The model difficulty to reproduce the directional bora decoupling between the
Vratnik Pass and Senj is an important challenge for the modeling community.
Simulations with different model setups indicate that the model is able to
reproduce the decoupling only for a specific constellation of input parameters,
which in one case amounted to using one-way instead of two-way nesting. The
decoupling is also an interesting dynamical issue, since lee rotors have been
reported in many occasions over the Adriatic, but their frequencies, locations
and mechanisms are generally not known. The appearance of a relatively small-
scale closed low-pressure center over the Adriatic in the lee of the Apennines
that is associated with the Genoa cyclone calls for further analysis in order to
understand the mechanisms that generate such systems. It is not known how
many cases from cluster 8 are related to those systems, but the predominance of
northeasterly winds at the Vratnik Pass in cluster 8 indicates that these might be
more than rare events. Two features worthy of further investigation emerge also
in cluster 6: strong southwesterly winds at the Vratnik Pass in otherwise weak-
wind flow that could be related to mountain-wave dynamics, and the strange 90°
departure of wind direction at Rab that was only hypothetically related to the

influence of the local terrain.
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TABLES

Table 1. A contingency table for the simultaneous occurrence of Bora at the
Vratnik Pass (VP) and Senj. Each event at each site has a numerical value
assigned to it (in brackets). Different combinations of events observed
simultaneously at both sites result in different detector values in the table (see

Fig. 4). NaN denotes a data gap.

Senj | Bora YES (1) | BoraNO (0) | NaN (-0.25)
VP
Bora YES (2) 3 2 1.75
Bora NO (0) 1 0 -0.25
NaN (-0.75) 0.25 -0.75 -1
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762
763
764
765  Table 2. Number (N) and percentage of cases, and the average episode duration
766  (T) for each cluster. Trans denotes other cluster categories that each cluster

767  most frequently transitions to.

Cluster 1 2 3 4 5 6 7 8
N 810 711 689 615 278 273 224 130
[%] 21.7 19.1 18.5 16.5 7.5 7.3 6.0 3.5
T (h) 8.4 8.3 5.2 5.2 9.6 10.5 5.2 5.7
Trans 3,6 4,5 1,4 2,3,7 2 1 4,3,2 3,1
768
769
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FIGURE CAPTIONS

Figure 1. Topography of the northeastern Adriatic region. The four
observational stations are indicated: Vratnik Pass (44.979°N, 14.984°E, 698 m
above MSL), Senj (44.990°N, 14.899°E, 2 m above MSL), Rab (44.750°N,
14.767°E, 24 m above MSL), and Mali Losinj (44.533°N, 14.467°E, 53 m above
MSL). The inset in the upper right corner shows the detailed topography around

the Vratnik Pass (contour interval is 75 m).

Figure 2. Wind roses at (a) the Vratnik Pass, (b) Senj, (c) Rab and (d) Mali LoSinj

for the period from October 2004 to June 2005.

Figure 3. Conditional wind roses at Senj during October 2004 - June 2005 for
six different wind speed and direction combinations at the Vratnik Pass. Headers
at each subplot denote criteria at the Vratnik Pass for which conditional wind
rose at Senj was calculated: (a), (b) and (c) for northeasterly bora direction; (d),
(e) and (f) for southwesterly direction; (a) and (d) for weak winds, (b) and (e)
for moderate winds, (c) and (f) for strong winds at the Vratnik Pass. The
remaining cases (2%) are predominantly related to weak winds at the Vratnik

Pass from directions other than bora and southwesterly.

Figure 4. Detection of the simultaneous bora occurrence at the Vratnik Pass and

Senj. The detector value of 2 denotes the decoupled episodes that occur when

bora blows at the Vratnik Pass but not at Senj. The values 3 and 0 stand for the
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bora presence and absence at both stations, respectively. See Table 1 for the

complete description of the detector values.

Figure 5. Eight wind regimes represented by the K-means cluster centers. N
denotes the number of members in a cluster. Bottom left in each panel is the 5 m

s1 reference vector.

Figure 6. Relative frequency distribution of the decoupled bora cases over
different clusters. The numbers above bars denote the relative contribution of
the decoupled cases to each cluster, expressed as the percentage of the total
number of cases in a cluster. Zeros for clusters 1, 5 and 6 indicate that there are

no decoupled bora episodes associated with these clusters.

Figure 7. MSLP for each cluster (see Fig. 5), averaged over all members of a

cluster. The filled circle denotes the Vratnik Pass.

Figure 8. Surface wind direction at the four studied stations from
measurements and the second nested WRF domain with 3-km grid spacing. ERA-
Interim, available every 6 h, is additionally shown at the point closest to the

Vratnik Pass.

Figure 9. MSLP and surface wind vectors from the ERA-Interim reanalysis and
WRF outermost and first nested domains on 27 December 2004 at 00 UTC (left)
and 06 UTC (right). Bottom left in each panel is the 20 m s'! reference vector and

the circle denotes the Vratnik Pass.
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Figure 10. Modeled vs. measured wind speed (top panels) and direction
(bottom panels) at the Vratnik Pass (left panels) and Senj (right panels) for the
directionally decoupled bora episode from cluster 7 that occurred from 00 - 12
UTC 5 February 2005. Model results are shown for two domains with grid

spacing of 1 km and 1/3 km.

Figure 11. The rotor occurrence in the WRF simulation of the decoupled bora
episode at 03 UTC 5 February 2005 for the 1/3 km domain. (a) Wind vectors and
the zonal wind component (color) at the first model level are shown over a
subset of the domain. Axes labels are grid points. Regions of flow reversal are
colored blue. Black circles denote Senj and the Vratnik Pass, and the black line
indicates the location of the vertical cross-section. (b) The vertical cross-section
along the indicated line, showing the wind vectors, turbulent kinetic energy

(color) and isentropes (0.5 K interval).
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Figure 1. Topography of the northeastern Adriatic region. The four

observational stations are indicated: Vratnik Pass (44.979°N, 14.984°E, 698 m
above MSL), Senj (44.990°N, 14.899°E, 2 m above MSL), Rab (44.750°N,
14.767°E, 24 m above MSL), and Mali LoSinj (44.533°N, 14.467°E, 53 m above
MSL). The inset in the upper right corner shows the detailed topography around

the Vratnik Pass (contour interval is 75 m).

37



(a) (b)
Vratnik Pass Senj
N N
75%
50%
25%

w w E
]
(c) (d)
Rab Mali LoSinj
N N
75% 75%
50% 50%
259 259
%/ %7
w "V E w \/\J E
S S

845

846  Figure 2. Wind roses at (a) the Vratnik Pass, (b) Senj, (c) Rab and (d) Mali LoSinj
847  for the period from October 2004 to June 2005.
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Figure 3. Conditional wind roses at Senj during October 2004 - June 2005 for
six different wind speed and direction combinations at the Vratnik Pass. Headers
at each subplot denote criteria at the Vratnik Pass for which conditional wind
rose at Senj was calculated: (a), (b) and (c) for northeasterly bora direction; (d),
(e) and (f) for southwesterly direction; (a) and (d) for weak winds, (b) and (e)
for moderate winds, (c) and (f) for strong winds at the Vratnik Pass. The
remaining cases (2%) are predominantly related to weak winds at the Vratnik

Pass from directions other than bora and southwesterly.
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Figure 4. Detection of the simultaneous bora occurrence at the Vratnik Pass and

Senj. The detector value of 2 denotes the decoupled episodes that occur when

bora blows at the Vratnik Pass but not at Senj. The values 3 and 0 stand for the

bora presence and absence at both stations, respectively. See Table 1 for the

complete description of the detector values.
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Eight wind regimes represented by the K-means cluster centers. N
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Figure 6. Relative frequency distribution of the decoupled bora cases over
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no decoupled bora episodes associated with these clusters.
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Figure 7. MSLP for each cluster (see Fig. 5), averaged over all members of a
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Figure 9. MSLP and surface wind vectors from the ERA-Interim reanalysis and
WRF outermost and first nested domains on 27 December 2004 at 00 UTC (left)
and 06 UTC (right). Bottom left in each panel is the 20 m s'! reference vector and

the filled circle denotes the Vratnik Pass.
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Figure 10. Modeled vs. measured wind speed (top panels) and direction
(bottom panels) at the Vratnik Pass (left panels) and Senj (right panels) for the
directionally decoupled bora episode from cluster 7 that occurred from 00 - 12
UTC 5 February 2005. Model results are shown for two domains with grid

spacing of 1 km and 1/3 km.
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Figure 11. The rotor occurrence in the WRF simulation of the decoupled bora
episode at 03 UTC 5 February 2005 for the 1/3 km domain. (a) Wind vectors and
the zonal wind component (color) at the first model level are shown over a
subset of the domain. Axes labels are grid points. Regions of flow reversal are
colored blue. Black filled circles denote Senj and the Vratnik Pass, and the black
line indicates the location of the vertical cross-section. (b) The vertical cross-
section along the indicated line, showing the wind vectors, turbulent kinetic

energy (color) and isentropes (0.5 K interval).
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