

Meteorological and Hydrological Service

Downslope windstorms over very complex orography: formation and development of pulsations

Kristian Horvath¹, kristian.horvath@cirus.dhz.hr, Željko Večenaj², Branko Grisogono²

1 Research Department, Meteorological and Hydrological Service, Croatia 2 Geophysical Institute "Andrija Mohorovičić", Croatia

Introduction:: bora winds

- Bora gusty NE downslope windstorm along the eastern Adriatic coast
- Wind speeds > 40 m/s
- H5 wind gusts ~ 70 m/s
- Large temporal (and spatial) variability

Introduction:: pulsations

- Quasi-periodic behavior of bora gusts (e.g. Petkovšek, 1976), ~ 3-11 min (e.g. Belušić et al., 2006) = pulsations
- Three mechanisms proposed:
 - 1. Vortex tilting in the wave-breaking region (Clark and Farley, 1984)
 - 2. The effect of propagating lee waves (Clark et al., 1994)
 - 3. KHI between low-level shooting flow and wave-breaking aloft (Scinocca and Peltier, 1989 ..., P&S1990, Smith 1991)
- All 3 mechanisms require wave-breaking (thus non-local)
- In the Adriatic, mechanism of bora pulsations is KHI (Belušić et al., 2007)
 ICAM 2013 Kranjska gora

WINDEX measurement campaign

1) 60-m wind tower on Pometeno brdo
3 sonics at 10 m, 22 m and 40 m (5Hz)
2 cup & vane anems at 30 m and 60 m
2) SODAR on Split Airport
10 m vertical resolution (up to 300 m)

Period: 3 months (Feb-May 2010)

Anticyclonic bora episode 28 Apr 2010

Wind tower measurements on 28 Apr 2010

Medium to strong bora event: near-surface winds reaching 15 m/s
 Streamwise wind speed component

Kranjska gora

Measurements:: pulsations

The evolution of pulsations (running spectra)

Numerical modeling

The WRF model setup:

- 4 one-way nested domains (dx=9|3|1|0.333 km)
- 40 vertical levels
- IC&LBC ECMWF_OA
- MYJ, KF, Thompson
- Noah LSM
- True horizontal diffusion

Large spatial wind speed variability due to individual mountains
 Fair representation of wind speed at tower location

Numerical simulations:: Representation of pulsations

 Pulsations at tower location are represented to an extent, but simulated pulsations have less energy than observed

Daytime flow&pulsations

- Daytime flow is unstationary
- Pulsations:
 - The most intensive beneath the primary breaking mountain wave
 - Travel far away from the origin point
 - R<0.25 not always found near the primary gravity-wave breaking region
- KHI mechanism questionable

ICAM 2013

Nighttime flow&pulsations

- Nighttime flow more stationary
- Pulsations:
 - More sporadic
 - Appear beneath the breaking mountain wave
 - Dissipate quickly downstream of the origin point
 - Ri<0.25 found near the primary gravity waves
- Pulsations point to Kelvin-Helmholtz instability

Propagation of pulsations:: large spatial variability

Pulsations:: upstream variability

- Daytime pulsations of T~8-15 min are present both upstream and downstream
- Could these daytime pulsations be caused by 1) background flow properties and/or 2) local surface forcing ?

Pulsations:: upstream variability during daytime

Scorer parameter of the background flow during daytime

ICAM 2013

Pulsations:: upstream variability during daytime

The effect of surface fluxes

Pulsations:: no fluxes from the surface

Reduced intensity of pulsations during daytime, primarily for $T > \sim 8$ min

- 3-dimensional bora flow in the mid-Adriatic is more complex than in the north
- Pulsations found in *u*, *v* and *w*, but not always at the same time
- Two regimes of pulsations are found:
- A) Smaller-scale pulsations predominantly point to KHI mechanism. They may occur regardless of the period of day
- B) Larger-scale pulsations point to effects of upstream variability and surface forcing
- These two regimes of pulsations may act in concert

Pulsations in the background flow

 Daytime pulsations (8-11min) are present in the nearsurface daytime background flow

P15 40m streamwise wind speed 20 Upstream pulsations 0.8 15 time [UTC] 0.6 04 10 0.2 5 **10**⁻¹ f*S(f){m² s⁻²h 10⁰ 10² 10¹ T [min]

