

OBSERVATIONS OF TURBULENCE IN THE STABLE SURFACE LAYER OVER INHOMOGENEOUS TERRAIN

Karmen Babić, Zvjezdana Bencetić Klaić, Željko Večenaj

University of Zagreb, Faculty of Science, Department of Geophysics, Zagreb, Croatia

babick@gfz.hr

ICAM 2013 - International Conference on Alpine Meteorology, Kranjska Gora, Slovenia, 3 - 7 June 2013

Motivation - Air pollution in Kutina

Kutina, Croatia

Observations

Observations

- Measurement tower industrial area of Kutina (T)
- 3D ultrasonic anemometers:
 - 20, 32, 40, 55 and 62 m AGL *u*, *v*, *w* and T_s
- Sampling frequency 20 Hz
- Analyzed period: wintertime months nocturnal cases between 1800 and 0600 LST nine 12-h segments = 108 hours

Implicit assumption: a physical decoupling between the "passive" fluctuations of mesoscale/diurnal motions and "active" small scale (turbulent) fluctuations exists

a "gap" in the spectra of temperature and velocity components

Fourier spectral analysis : information on large-scale to small-scale eddy energy transport

The value of the spectrum at a specific frequency — the mean energy in that eddy size

Cumulative integral of cospectrum is used to determine the frequency f_c at which there is no more contribution to the covariance

$$Og_{xy}(f_0) = \int_{\infty}^{f_0} Co_{xy}(f) df$$
 Ogive function

 $\longrightarrow t_c = f_c^{-1}$

minimum averaging time necessary to include all flux contributions (Oncley et al., 1990)

v component

• Ogives from 54-min average cospectra of *u* and *w* – usually inconclusive

Turbulence statistics

- Statistical moments variances and covariances and turbulence kinetic energy (TKE) calculated as 30-min averages – 216 data points
- NBL is traditionally classified according to the strength of stability
- Stability parameter: non-dimensional local z/Λ
- Local Obukhov length:

$$\Lambda = \frac{-u_*^3}{k \frac{g}{\Theta_v} \left(\overline{w'\Theta_v'}\right)} = \frac{-\left(\overline{(u'w')}^2 + \overline{(v'w')}^2\right)^{3/4}}{k \frac{g}{\Theta_v} \left(\overline{w'\Theta_v'}\right)}$$

		Stable	Stro	ongly stable	
Level		z/∧ > 0	z/∧ > 1		
	Number	Percentage (%)	Number	Percentage (%)	
20 m	203	94	170	89	
32 m	208	96	193	93	
40 m	205	95	198	97	
55 m	196	91	192	98	
62 m	203	94	199	98	

Very Stable Regime

z-less approximation

Normalized turbulent quantities that are functions of the local stability parameter z/Λ

constant values for large values of z/Λ

Stability categories (according to Conangla et al. 2008)

z/∧	Number of data	Percentage of data
0.001-0.01	1	0.1
0.01-0.03	2	0.2
0.03-0.05	1	0.1
0.05-0.07	1	0.1
0.07-0.09	1	0.1
0.09-0.15	7	0.7
0.15-0.35	16	1.6
0.35-0.65	19	1.9
0.65-1.15	30	3.0
1.15-1.5	18	1.8
1.5-2	23	2.3
2-4	95	9.4
4-6	82	8.1
6-10	106	10.4
10-20	160	15.8
20-100	349	34.4
> 100	104	10.2

Turbulence statistics

Turbulence statistics

Summary

- Fourier spectral analysis indicates that 5 min is appropriate scale for definition of turbulent perturbations in Kutina for chosen nights
- Magnitudes of the local stability parameter indicate that turbulence statistics might belong to the *z-less* approximation
- Using *z-less* approximation normalized turbulent quantities show similar dependence on stability parameter as already reported in literature
- Further steps: analysis of a larger data sample to include weakly and moderately stable conditions into the perspective

Thank you for your attention!

Appendix

	20 m	32m	40m	55m	62m
E	18	14	15	13	14
ESE	14	17	18	15	14
SE	6	8	9	13	14
SSE	13	14	16	19	18
S	10	12	12	12	13
SSW	9	8	10	11	11

Percentage of six wind directions at five levels for the investigated time period

"upside-down" BL

iviean i K	e (m-s -)								
	Night1	Night2	Night3	Night4	Night5	Night6	Night7	Night8	Night9
62 m	0.4180	0.1716	0.6361	0.2081	0.5082	0.1122	0.5016	0.2480	0.1162
55 m	0.4113	0.1771	0.6448	0.2123	0.5652	0.1180	0.4838	0.2317	0.1118
40 m	0.3942	0.1717	0.6038	0.2109	0.5827	0.1297	0.4515	0.1986	0.1059
32 m	0.4349	0.1701	0.6103	0.2244	0.6414	0.1527	0.4854	0.1801	0.1131
20 m	0.4174	0.1554	0.5825	0.2516	0.7258	0.1428	0.4342	0.1514	0.1203

Observations

The most frequent wind directions: E, ESE, SE, SSE, S and SSW