# **Observations of the bora-wind turbulence using the hot-wire anemometer**



<sup>1</sup>Željko Večenaj, <sup>1</sup>Damir Ptičar, <sup>2</sup>Hrvoje Hegeduš, <sup>3</sup>Goran Lončar, <sup>3</sup>Goran Gjetvaj and <sup>1</sup>Branko Grisogono

<sup>1</sup>Andrija Mohorovičić Geophysical Institute, Department of Geophysics, Faculty of Science, University of Zagreb, Croatia

<sup>2</sup>Department of Fundamentals of Electrical Engineering and Measurements, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

<sup>3</sup>Water Research Department, Faculty of Civil Engineering, University of Zagreb, Croatia

<u>zvecenaj@gfz.hr</u>

## **I. INTRODUCTION**

- BORA: a strong downslope windstorm that blows at the E Adriatic coast from the NE quadrant
- Smith (1987): Hydraulic nature of the mean bora flow
- The mean wind speed may reach 30 m s<sup>-1</sup>
- Due to the gustiness wind speed maxima my surpass 60 m s<sup>-1</sup>

#### OBJECTIVE:

To estimate the *TKE* dissipation rate,  $\varepsilon$ 

 $\rightarrow$  "cheapest" way to do it is using ultrasonic anemometer data and the Inertial Dissipation Method (IDM):

$$S_u(k) = \alpha \varepsilon^{\frac{2}{3}} k^{\frac{-5}{3}} \rightarrow \text{Taylor's hypothesis} \rightarrow$$

$$\varepsilon = \frac{2\pi}{\overline{U}} \left[ \frac{f^{5/3} S_u(f)}{\alpha} \right]^{3/2}$$

How reliable is this approach for bora?

\* The hot-wire anemometer (HWA)  $\rightarrow$  direct method for estimation of  $\varepsilon$ :

$$\epsilon = 15 \nu \overline{\left(\frac{\partial u}{\partial x}\right)^2}$$

Taylor's hypothesis + Heskestad-Lumley correction for the streamwise derivative:

$$\epsilon = \frac{15\nu}{U^2} \left(\frac{\partial u}{\partial t}\right)^2 \left(1 + \frac{\overline{u^2}}{U^2} + 2\frac{\overline{v^2} + \overline{w^2}}{U^2}\right)^{-1}$$

 $v = 1.5 \cdot 10^{-5} \text{ m}^2 \text{ s}^{-1}$ .....kinematic viscosity

↔ How fast do we need to sample the bora wind speed with the HWA? →
→ Kolmogorov's microscale η → size of the dissipative eddies:

$$f_{K} = \frac{U}{2\pi\eta}$$
 ......Kolmogorov's frequency  $\rightarrow$  Nyquist frequency

Piper and Lundquist (2004):

For direct dissipation calculations, all scales that experience dissipation must be resolved. These scales include eddies at the Kolmogorov microscale  $\eta$ , which is given by

$$\eta = (\nu^3/\epsilon)^{1/4},\tag{2}$$

where  $\nu$  is kinematic molecular viscosity. During the frontal passage,  $\eta$  reached a minimum value of approximately 0.25 mm. The frequency required to resolve

- How did they calculate  $\eta$ ?  $\rightarrow$  No information about  $\varepsilon$  (not yet)!
- If we take their value of  $\eta = 0.25$  mm and extreme mean bora wind speed of 30 m s<sup>-1</sup>:

$$f_{K} = \frac{0}{2\pi\eta} \quad \Rightarrow f_{K} \approx 20\ 000\ \text{Hz} \quad \Rightarrow f_{S} \approx 40\ 000\ \text{Hz}$$

• Our ultimate goal  $\rightarrow$  to sample bora with  $f_S \approx 50\ 000\ \text{Hz}$ 

## **II. INSTRUMENTS, LOCATION AND DATA**

- HWA: Dantec Dynamics multichannel CTA (Constant Temperature Anemometer) system
- The original software can continuously record only  $8 \cdot 10^6$  samples  $\rightarrow 160$  s intervals with  $f_s \approx 50\ 000$  Hz  $\rightarrow$  problem!
- Guys from the Faculty of Electrical Engineering (FEE guys) wrote a new software → problem solved!
- The original DAQ card cannot register changes in the hot wire voltage if the *f<sub>S</sub>* > 10 000 Hz → *f<sub>K</sub>* = 5 000 Hz → *U*<sub>max</sub> below 10 m s<sup>-1</sup> →
   → weak to moderate bora
- Gill WindMaster Pro ultrasonic anemometer











#### **III. ANALYSIS AND RESULTS**

■ In situ calibration of *E*<sub>HWA</sub> to *U*<sub>USA</sub> on 5-s intervals using King's law:

 $E^2 = a + bU^n$ 

*n* = 0.45







#### V. SUMMARY

- Indications that IDM might be useful for bora
- Higher sampling rate is needed to cover greater wind speeds  $\rightarrow$ 
  - → FEE guys provided a better DAQ card and we have measured bora using  $f_S \approx 50\ 000\ \text{Hz}$



# Discussion is opened!