Developement of eddy diffusivity method based on LES simulations in convective conditions

Amela Jeričević¹, Željko Večenaj² & Igor Esau³

1 Aeronautical Meteorological Department, CCAA, Croatia

2 AMGI Dept. of Geophysics, Faculty of Science, Univ. of Zagreb, Croatia

3 Nansen Environmental and Remote Sensing Center, University of Bergen, Norway

Overview

- Review of work done/published/implemented on K(z) parameterisation in stable conditions
- Extension to convective conditions: theory&application
- LES simulations turbulence resolving modelling
 - Crucial tool in developing of constructive theory of PBL sensitivity to the imposed stability
 - Kh, Km, Pr...
 - Large-scale, semi –organized eddies driven by buoyancy forces
 - CBL-shear free, mean V<Vh_in large eddies
- Future work

Review: K(z) from LES stable cond.

- Methodology
 - LES data (DATABASE 64, e.g. Esau and Zilitinkevich, 2006)

Class	wθ _o	N	Number	R _B	H _{LES}
Conventionally neutral	0	> 0	39	0.005 - 3.59	128 - 1652
Nocturnal	< 0	0	31	0.05 - 3.38	46 - 1875
Long-lived	< 0	> 0	15	0.35 - 7.6	16 - 507

• Each simulation was run for 15 hours to achieve a quasy steady state

K(z) -stable case (Jeričević & Večenaj 2009 BLM; Jeričević et al. 2012. ACP)

$$K_{h} = -\frac{\overline{w'\theta'}}{d\theta/dz} (1)$$

$$K_{m} = k u_{*} z (2) SL$$

$$K_{m} = -\frac{\overline{u'w'}}{dU/dz} (3) OL$$

$$K(z) = (K_{\max}e^{1/2} / z_{\max})z \exp\left[-0.5(z / z_{\max})^{2}\right]$$

$$K_{\max} = C(K)Hu_{*}$$
$$z_{\max} = C(z_{\max})H \qquad (4)$$

New lin-exp. function for stable conditions

		$C(K) \pm \sigma$	$C(z_{\max})\pm\sigma$
	$K_m (\mathrm{m}^2 \mathrm{s}^{-1})$	0.04 ± 0.02	0.32 ± 0.16
Stable	$K_h(\mathrm{m}^2\mathrm{s}^{-1})$	0.05 ± 0.02	0.21 ± 0.08

Convective LES database

- General experiment conditions
 - LESNIC v231, latitude 45N, roughness 0.1m
 - Domain size 6x6x3 km
 - Mesh 128x128x128
 - Free atmospheric stability 0.065 Km⁻¹
 - Run duration 5h-18000 s

Wind	F_{θ} Kms ⁻¹	F_{θ} Kms ⁻¹	$F_{\theta} \mathrm{Kms}^{-1}$	F_{θ} Kms ⁻¹
speed	0.40	0.25	0.07	0.02
[0.5 0.0]	A run1	A run2	A run3	A run4
[1.5 0.0]	B run 5	B run 6	C run 7	C run 8
[2.5 0.0]	B run 9	C run 10		
[4.0 0.0]	C run 12	C run 13		
[6.0 0.0]	C run 14	D run 15		
[8.0 0.0]		D run 16		
[-8.0 0.]	D run 17	D run 18		

- A: very unstable case characterized by low wind speed ~0.5m/s and gradually decreasing heat flux from run 1 → run 4
- B: unstable: run 5 and 6 have higher heat flux and wind ~1.5m/s
- C: slightly unstable: run 7 and 8-low heat flux wind ~1.5m/s, run 10-13 higher heat flux but with gradually increasing wind speeds
- D: neutral: heat flux ~0.4 and 0.25 and windy conditions > 6m/s

K(z) profiles - convective LES

6

Troen & Mahrt, 1986

$$K_{h} = -\frac{\overline{w'\theta'}}{(d\theta/dz - \gamma_{h})} \qquad \gamma_{h} = C \frac{(\overline{w'\theta'})_{0}}{w_{s}H} \quad 5$$

$$K_m = -\frac{w u}{(du/dz - \gamma_m)}$$

$$\gamma_m = \frac{1}{H - z_s} \int_{z_s}^{H} \frac{-\overline{u'w'} - K_m \,\partial u/\partial z}{K_m} dz$$

TM, Holtslag et al. 1990; Holtslag and Boville, 1992

$$K_m = k w_m z \left(1 - \frac{z}{H} \right)^2$$
 7

		Wind	$F_{\theta} \mathrm{Kms}^{-1}$	F_{θ} Kms ⁻¹	F_{θ} Kms ⁻¹	$F_{\theta} \mathrm{Kms}^{-1}$
		speed	0.40	0.25	0.07	0.02
Class B		[0.5 0.0]	A run1	A run2	A run3	A run4
		[1.5 0.0]	B run 5	B run 6	C run 7	C run 8
		[2.5 0.0]	B run 9	C run 10		
		[4.0 0.0]	C run 12	C run 13		
		[6.0 0.0]	C run 14	D run 15		
		[8.0 0.0]		D run 16		
	127 1	[-8.0 0.]	D run 17	D run 18		

Wind	F_{θ} Kms ⁻¹	$F_{\theta} \mathrm{Kms}^{-1}$	F_{θ} Kms ⁻¹	$F_{ heta}\mathrm{Kms^{-1}}$
speed	0.40	0.25	0.07	0.02
[0.5 0.0]	A run1	A run2	A run3	A run4
[1.5 0.0]	B run 5	B run 6	C run 7	C run 8
[2.5 0.0]	B run 9	C run 10		
[4.0 0.0]	C run 12	C run 13		
[6.0 0.0]	C run 14	D run 15		
[8.0 0.0]		D run 16		
[-8.0 0.]	D run 17	D run 18		

D class

New K(z) formulation

$$K(z) = (K_{\max}e^{1/2} / z_{\max})z \exp\left[-0.5(z / z_{\max})^{2}\right]$$

 $z_{\max} = C(z_{\max})H$

$$K_{\text{max}} = C(K)Hw_*$$
 $w_* = \left(\left(g/\theta_{v0} \right) \left(\overline{w'\theta'_v} \right)_0 H \right)^{1/3}$ Convective velocity scale

$$K(z) = C_s u_* z \exp\left(-0.5(z/0.21H)^2\right) \qquad \text{stable conditions,} \qquad \begin{array}{l} \text{Cs=0.39} \\ K(z) = C_u w_* z \exp\left(-0.5(z/0.31H)^2\right) \qquad \text{unstable conditions,} \qquad \begin{array}{l} \text{Cu=1.65} \sim e^{1/2} \end{array}$$

Conclusions

- Km does not vary significantly with stability < 10m²/s
- In stable conditions
 - Km described by exp. or polynomial,
 - similar to Kh
 - Pr>>1 with increasing stability
- In convective conditions,
 - with height but not significantly in almost constant & small range with height and with Pr=Km/Kh<<1 since Kh>>Km
- Applied Km based on TM, Holtslag significantly overestimates Km
 - Pr/Pr_TM= 0,131579 i.e. Pr is overestimated ~7,6 times by TM approach!
- Theory: Are some mechanism(s) is missing? Are the parameterisations wrong?

Conclusions-cont.

- Future work
 - implementation and verification
 - WRF, EMEP
 - Inclusion of entrainment layer in parametrisations