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Abstract 22 

 23 

The Prandtl model succinctly combines the 1D stationary boundary-layer dynamics and 24 

thermodynamics of simple anabatic and katabatic flows over uniformly inclined surfaces. It 25 

assumes a balance between the along-the-slope buoyancy component and adiabatic 26 

warming/cooling, and the turbulent mixing of momentum and heat. In this study, energetics of 27 

the Prandtl model is addressed in terms of the total energy (TE) concept. Furthermore, since 28 

the authors recently developed a weakly nonlinear version of the Prandtl model, the TE 29 

approach is also exercised on this extended model version, which includes an additional 30 

nonlinear term in the thermodynamic equation. Hence, interplay among diffusion, dissipation 31 

and temperature-wind interaction of the mean slope flow is further explored. The TE of the 32 

nonlinear Prandtl model is assessed in an ensemble of solutions where the Prandtl number, the 33 

slope angle and the nonlinearity parameter are perturbed. It is shown that nonlinear effects 34 

have the lowest impact on variability in the ensemble of solutions of the weakly nonlinear 35 

Prandtl model when compared to the other two governing parameters. The general behavior 36 

of the nonlinear solution is similar to the linear solution, except that the maximum of the 37 

along-the-slope wind speed in the nonlinear solution reduces for larger slopes. Also, the 38 

dominance of PE near the sloped surface, and the elevated maximum of KE in the linear and 39 

nonlinear energetics of the extended Prandtl model are found in the PASTEX-94 40 

measurements. The corresponding level where KE>PE most likely marks the bottom of the 41 

sublayer subject to shear-driven instabilities. Finally, possible limitations of the weakly 42 

nonlinear solutions of the extended Prandtl model are raised. In linear solutions, the local 43 

storage of TE term is zero, reflecting the stationarity of solutions by definition. However, in 44 

nonlinear solutions, the diffusion, dissipation and interaction terms (where the height of the 45 

maximum interaction is proportional to the height of the low-level jet by the factor ≈4/9) do 46 

not balance and the local storage of TE attains non-zero values. In order to examine the issue 47 

of non-stationarity, the inclusion of velocity-pressure covariance in the momentum equation is 48 

suggested for future development of the extended Prandtl model. 49 

 50 

Keywords: katabatic flow, anabatic flow, Prandtl model, nonlinear solution, total energy 51 
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1 Introduction 52 

 53 

 Katabatic and anabatic winds are downslope and upslope flows that form when a 54 

density difference between the air near the slope and the nearby atmosphere develops at the 55 

same height. This type of flow is often observed in regions of complex orography and 56 

substantially affects the weather and climate in these regions (e.g., Poulos and Zhong, 2008). 57 

The topic of katabatic and anabatic wind is being actively explored and the work on its 58 

understanding includes the application of numerical models (direct numerical simulations 59 

(DNS): e.g., Shapiro and Fedorovich (2008); large eddy simulations (LES): e.g., Skyllingstad 60 

(2003), Smith and Porté-Agel (2013); mesoscale models: e.g., Zammett and Fowler (2007), 61 

Smith and Skyllingstad (2005) and analytical models (e.g., Prandtl, 1942; Defant, 1949; 62 

Grisogono and Oerlemans, 2001; Zardi and Serafin, 2014). Continued interest in katabatic and 63 

anabatic winds stems from the important effects of this type of orographic flows on visibility 64 

and fog formation, air pollutant dispersion, agriculture and energy use, fire-fighting 65 

operations, sea-ice formation, etc. (e.g., Shapiro and Fedorovich (2014) and references 66 

therein). Katabatic winds develop in stably stratified planetary boundary layers (PBLs), 67 

adding an additional level of complexity to the problem of understanding and modeling this 68 

specific type of PBLs (e.g., Mahrt, 1998; Mahrt, 2014; Sandu et al., 2013; Holtslag et al., 69 

2013; Sun et al., 2015). In reality, a strong surface heat surplus may contribute to a high 70 

Rayleigh number and initiation of free convection over the horizontal plane (e.g., Princevac 71 

and Fernando 2007). This condition may limit the general applicability of the Prandtl model 72 

and its extensions to the case of anabatic flow for a large surface temperature surplus. 73 

However, Defant (1949) and Fedorovich and Shapiro (2009a, b) as well as several other 74 

authors, show clearly that the Prandtl model is applicable, at least qualitatively, to anabatic 75 

flow. Although the latter authors state that turbulent anabatic flows differ more, in a mean 76 

qualitative sense, from its Prandtl model version for katabatic flows, they still show and claim 77 

the overall applicability of the Prandtl model (at least qualitatively) to both flow types. In 78 

parallel to current theoretical and numerical modeling efforts, large observational campaigns 79 

and programs over complex orography should be of a high priority in order to better 80 

understand the nature of thermally driven slope flows (e.g., Poulos and Zhong, 2008; Grachev 81 

et al., 2015; Fernando et al., 2015). 82 

 In the model of Prandtl (1942), katabatic flow is the result of a balance between the 83 

along-slope buoyancy force and adiabatic warming/cooling, and normal-to-slope turbulent 84 

fluxes of momentum (i.e., friction) and heat (i.e., diffusion), respectively, in an otherwise 85 
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motionless and statically stable background atmosphere. This paper starts with the classical 86 

theoretical model of slope flows developed by Prandtl (1942), somewhat modified and 87 

verified by Defant (1949), who deployed it specifically for anabatic flow (see also Zardi and 88 

Whiteman, 2013), and an extended Prandtl model that includes weakly nonlinear effects as 89 

done in Grisogono et al. (2015). It includes the standard concepts of potential, kinetic and 90 

total energy, now for katabatic and anabatic flows. In the energetics framework, wind speed 91 

and temperature perturbations are linked in one equation (i.e., the total energy equation) and 92 

the conservation and conversion properties of energy components are of special concern in 93 

various research problems (e.g., the effect of turbulent mixing may be parameterized in terms 94 

of kinetic energy). The energy approach applied here is motivated by the total turbulent 95 

energy concept developed by e.g., Mauritsen et al. (2007), where kinetic energy is related to 96 

turbulent wind perturbations, while potential energy is related to turbulent potential 97 

temperature perturbations. In our case, we focus only on mean katabatic and anabatic flows 98 

that are present over sloped surfaces. The difference, when compared to Mauritsen et al. 99 

(2007), is in our focus not being on the turbulent part of the flow but on the wind and 100 

temperature finite amplitude deviations from the background state coming from 101 

katabatic/anabatic flows. In this sense, our approach is similar to the energy framework of 102 

katabatic winds applied by Smith and Skyllingstad (2005). While Smith and Skyllingstad 103 

(2005) define kinetic energy in the same way as Mauritsen et al. (2007), their potential energy 104 

is defined as a linear function of both temperature perturbations and the height above the 105 

slope. Although there are some differences in the literature concerning the definition of 106 

potential energy, it is typically a function of potential temperature perturbations. Potential 107 

temperature perturbations, under the assumptions of hydrostatic and adiabatic motion, include 108 

the effects of absolute temperature perturbations and changes in the distance from the surface 109 

(e.g., DeCaria, 2007). The total energy is then the sum of kinetic and potential contributions. 110 

 We limit ourselves only to the linear and weakly nonlinear solution of the (extended) 111 

Prandtl model. A detailed description of the extended Prandtl model is presented in Grisogono 112 

et al. (2015; their Section 2). The new term that extends the original Prandtl model is 113 

presumably weak and regulated by the nonlinearity parameter ε. Our approach is relatively 114 

simple and general, and may be applied to solutions of Prandtl-type models that include 3D 115 

effects (e.g., Burkholder et al., 2009; Shapiro et al., 2012), effects of the Coriolis force (e.g., 116 

Stiperski et al., 2007), time-dependent types of solutions (e.g., Zardi and Serafin, 2014), 117 

effects of vertically varying turbulent mixing coefficients (e.g., Grisogono and Oerlemans 118 

2001; Grisogono et al., 2015), etc. To sum up, this study combines the work of Mauritsen et 119 
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al. (2007) and Grisogono et al. (2015), i.e., the energy concept and weak nonlinearity, 120 

respectively, to shed more light on the physics of simple slope flows. 121 

 This study is independent but based on the work of Grisogono et al. (2015). There it 122 

was shown that with the weakly nonlinear Prandtl model one obtains solutions with stronger 123 

near-surface stratification and weaker katabatic wind speed (with both constant and variable 124 

eddy heat conductivity). However, although more realistic, the solutions of the weakly 125 

nonlinear model were not superior to the linear solutions when compared to limited 126 

observations. The nonlinearity affected low-level jet strength and elevation in katabatic, but 127 

also anabatic, flows. In anabatic flow, in contrast to katabatic flow, it enhanced the low-level 128 

jet. The consequences of the introduced nonlinearity on the model energetics will be explored 129 

in this paper. 130 

The goal of this study is to evaluate an ensemble of linear and weakly nonlinear 131 

solutions of the (extended) Prandtl model for katabatic and anabatic flows, and to examine the 132 

model energetics related to these solutions. In order to explore the sensitivity of our results to 133 

several model assumptions, we present a set of solutions where three governing parameters 134 

are perturbed: (1) the turbulent Prandtl number Pr, (2) the slope angle α, and (3) the so-called 135 

nonlinearity parameter ε as defined in Grisogono et al. (2015). We will present certain 136 

characteristics of the solutions of the Prandtl model, the vertical profiles of kinetic KE, 137 

potential PE and total energy TE, and the governing terms in the total energy TE equation. 138 

The structure of the paper is as follows. In Section 2 we present the governing 139 

equations of our model and define the ensemble of solutions. In Section 3, the solutions of the 140 

(extended) Prandtl model are described, with a specific focus on the variability in the 141 

ensemble of solutions and impacts on the model energetics. Some specific differences 142 

between the nonlinear and linear solutions, as well as the limitations of our extended Prandtl 143 

model are discussed in Section 4. The paper is finalized in Section 5, where the summary and 144 

outlook are presented.  145 
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2 Methodology 146 

 147 

 We first present the governing equations of the Prandtl model and develop a simple, 148 

basic energy framework where wind and potential temperature are linked with the concepts of 149 

kinetic, potential and total energy. The full description of the system would include the energy 150 

components of not only the mean slope flow, but of the background atmosphere and the 151 

turbulent part of the slope flow, and their interactions. We limit our analysis only to the part 152 

of the slope flow described by the Prandtl model, i.e., the mean slope flow with relatively 153 

large eddy diffusivity and conductivity; hence, the model may emulate a simple turbulent 154 

slope flow (Defant, 1949; Stiperski et al., 2007; Grisogono et al., 2015). 155 

 156 

2.1 Governing equations 157 

 158 

Potential temperature and wind can be decomposed into          and      159 

    , where          is the potential temperature of the background atmosphere having 160 

the vertical gradient   (in true vertical coordinate Z), and    is the surface potential 161 

temperature in a statically stable background atmosphere (e.g., Zardi and Serafin, 2014).The 162 

background atmosphere is motionless:     . Next,    and    are turbulent perturbations of 163 

the wind speed and potential temperature of the slope flow, while   and   present the mean 164 

finite-amplitude wind speed and potential temperature (here, averaging is defined in the 165 

Reynolds sense). 166 

The governing equations of the Prandtl model, including the weak nonlinearity 167 

extension (without invoking the steady-state assumption for the moment) are: 168 

 169 

  

  
  

 

  
          

   

   
 

, (Eq. 1) 170 

  

  
      

  

  
          

   

   
 

, (Eq. 2) 171 

 172 

where g is acceleration due to gravity, K is the eddy heat conductivity, Pr is the turbulent 173 

Prandtl number (all assumed constant in this study), and z is the coordinate perpendicular to 174 

the constant slope surface with the slope angle α. Parameter ε controls the feedback of the 175 
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flow-induced potential temperature gradient on to the corresponding background gradient, γ, 176 

because the former, below the low-level jet, can be 20-50 times stronger (in the absolute 177 

sense) than the latter (e.g., Grisogono and Oerlemans, 2001; Grisogono et al., 2015).  ε is an 178 

external parameter, roughly limited by the model input parameters, not by the model 179 

dynamics, and it pertains to the regular perturbation analysis used here (Bender and Orszag, 180 

1978; Grisogono et al. 2015; see also Supplementary Materials 1 in this study). After 181 

multiplying Eq. (1) by  , multiplying Eq. (2) by          or   , and adding the resulting two 182 

equations, the energy equation of the extended Prandtl model is attained: 183 

 184 

 

  
 
 

 
   

 

 
   

  

   
 
   

 
   

 

 
 

               
   

      
  

  
 

 

   
  

  
 

 

 
                 

   

            
  

  
 

             
   

 

, (Eq. 3) 185 

 186 

where the left side term is the local storage term of TE of the mean slope flow defined as the 187 

sum of kinetic KE=     and potential energy PE=  
2
/2 per unit mass (cf. Smith and 188 

Skyllingstad, 2005; and Mauritsen et al., 2007). The three terms on the right side are 189 

described as diffusion (DIF), dissipation (DIS) and interaction (INT) terms: DIF represents the 190 

diffusion of TE by the turbulent flow, DIS represents the dissipation of TE, and INT represents 191 

the interaction of the slope flow with the background atmosphere in the case of the weakly 192 

nonlinear model. Note that INT is equal to           
   

  
 , which can be interpreted as the 193 

slope-normal (i.e., nearly vertical) transport of potential energy. This term does not exist in 194 

the linear model. 195 

Four types of steady-state solutions of Eqns. 1 & 2 are analyzed in Grisogono et al. 196 

(2015). They include linear and weakly nonlinear solutions with turbulent mixing coefficients 197 

either constant or vertically varying. In this paper, a subset of these solutions is analyzed 198 

(from now on, the overbar is removed from potential temperature   and wind speed   of 199 

katabatic/anabatic flow): (1) the linear solution with the constant turbulent diffusivity profile 200 

     and     , and (2) the nonlinear solution with the constant turbulent diffusivity profile 201 

       and       . Initial results concerning the vertical variability of K and its impact on 202 

energy distribution show sensitivity to the formulation of K(z) and strong non-stationarity 203 

even in the linear case; thus, a detailed analysis of this subset of solutions is left for future 204 

Provisional



8 
 

study. For simplicity, here we show only the classical solutions of the Prandtl model      and 205 

     (for the nonlinear solutions please refer to Grisogono et al. (2015)): 206 

 207 

          
  

  
     

 

  
  

, (Eq. 4) 208 

            
  

  
     

 

  
  

, (Eq. 5). 209 

 210 

Following, e.g., Grisogono et al. (2015), C is the surface potential temperature deficit 211 

              for the katabatic flow (or the corresponding temperature surplus in 212 

anabatic flow              ), μ =[g /( γ  Pr)]
1/2

, hP = 2
1/2

/σ (hP can be interpreted as a 213 

characteristic depth of the Prandtl layer), σ = [N sin(α)/(KPr
1/2

)]
1/2

 (σ can be interpreted as a 214 

characteristic inverse length scale), N
2
 = γ g / θo is background buoyancy frequency squared, 215 

and K is the average eddy heat conductivity (in our case K=const in Eq. 1 and Eq. 2). The 216 

slope flow is assumed to be no-slip (i.e.,            ). 217 

In the case of linear and stationary flow, Eq. 3 simplifies to: 218 

 219 

  
  

   
 
      

       
 

 
      

     

  
 
 

   
     

  
 
 

  

, (Eq. 6) 220 

and one can easily check the equality by inserting Eq. 4 & 5 into Eq. 6. In the rest of the 221 

paper, we determine vertical derivatives using finite differences in the case of both linear and 222 

weakly nonlinear types of solution. 223 

 224 

2.2 Ensemble of solutions 225 

 226 

We evaluate the sensitivity of our solutions to the slope angle α, the value of the 227 

Prandtl number Pr and the nonlinearity parameter ε. Based on Grisogono et al. (2015), the 228 

basic values of these model parameters are α = -0.1 rad, Pr = 2 and ε = 0.005/0.03 229 

(katabatic/anabatic flow) where the justification of these parameter choices is discussed in 230 

more detail by Grisogono et al. (2015). The starting values of all three parameters are taken 231 

from Grisogono et al. (2015), where linear and nonlinear solutions reproduced well the 232 
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observations from the PASTEX-94 experiment (van den Broeke, 1997a, 1997b; Oerlemans 233 

and Grisogono, 2002). An ensemble of solutions is generated by evaluating them for this 234 

basic set of parameters and also when they change in amplitude by ±25% (this adds up to 27 235 

solutions in the case of nonlinear katabatic and anabatic flows, and 9 solutions in the case of 236 

linear katabatic and anabatic flows). This ensemble  will be used to examine the sensitivity of 237 

our solutions to moderate variations in the basic model assumptions. Other model parameters 238 

follow those from Grisogono et al. (2015): γ = 3 K/km, θo= 273.2 K, C = -6 K (+6 K) in 239 

katabatic (anabatic) flow, and K = 0.06 m
2
/s (3.0 m

2
/s) in katabatic (anabatic) flow. 240 
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3 Results 241 

 242 

3.1 Katabatic flow 243 

 244 

(a) Linear case 245 

 246 

 The vertical profiles of      and      for katabatic flow are shown in Fig. 1A. The 247 

potential temperature profile reveals a statically stable profile, with      increasing in the first 248 

30 m above the slope. At the same time,      starts from the no-slip condition at the sloped 249 

surface, attains a local maximum (i.e., a low-level jet is formed at the height hj) and slows 250 

progressively upwards. The corresponding vertical profiles of kinetic KE, potential PE and 251 

total TE=KE+PE energy for the katabatic flow in the case of the linear solution are shown in 252 

Fig. 1B. Near the surface, TE is dominated by PE and surface forcing (quantified through the 253 

surface temperature deficit C). There is a perfect balance between DIF and DIS in the energy 254 

budget, Fig. 1C. The wind speed      profile leads to a corresponding kinetic energy profile 255 

with its maximum in the first 15 m. We proceed next with the evaluation of the sensitivity of 256 

the ensemble of solutions for the katabatic flow described by the linear model.  257 

 The following three heights are of interest to us: 258 

(1) The height of the low-level jet hj. This is the maximum of u(z) which occurs at hj=π/4 259 

hP in the linear solutions, i.e., it increases with increasing Pr and decreases with an 260 

increasing slope (see also, Fig. 1D). At the same time, the maximum      is 261 

insensitive to the slope angle and decreases with increasing Pr (this can be shown by 262 

inserting hj in Eq. 5) as is confirmed in Fig. S3.1-A (please note that lines are shifted 263 

by the amount ±0.5 from the reference slope angle for presentation purposes). 264 

(2) The depth of the stable (in the anabatic case, unstable) layer. At the top of the stable 265 

layer dθ/dz=0, and this height equals 3 hP. It also increases with increasing Pr and 266 

decreases with an increasing slope in the linear solution (Fig. 1E). 267 

(3) The level where KE starts to dominate over PE (TE is primarily governed by PE 268 

close to the surface, while KE becomes larger than PE somewhere above hj). For the 269 

linear solutions of katabatic (and anabatic) flow, one can show (by setting the 270 

condition KE/PE=1) that the height where KE starts to dominate equals hP cos
-271 

1
([1/(1+Pr)]

1/2
); i.e., it also increases with increasing Pr and decreases with an 272 

increasing slope angle (Fig. 1F). This level is directly linked, though in a nonlinear 273 

way, to the gradient Richardson number, which is significantly smaller than 1, and 274 
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the consequent onset of dynamic flow instabilities (e.g., Grisogono 2003). At the 275 

same time, the amplitude at which KE starts to dominate is insensitive to the choice 276 

of slope (Fig. S3.1-E; lines are shifted by the amount ±0.5 from the reference slope 277 

angle for presentation purposes). This behavior of the KE is by definition directly 278 

linked to the behavior of     . More details about this measure are presented in 279 

Supplementary Materials 2. 280 

 281 

(b) Nonlinear case 282 

 283 

The deviation of the nonlinear from the linear solution for katabatic flow is presented 284 

in Fig. 2. The general characteristics of        and        profiles are equivalent to      and 285 

    , and their corresponding KE, PE and TE profiles are also similar. The nonlinear solution 286 

has slightly lower wind speeds and higher potential temperature (i.e., lower potential 287 

temperature anomalies; Fig. 2A) and this leads to lower KE, PE and TE (Fig. 2B). However, 288 

the vertical profiles of DIS and DIF do not overlap as in linear cases and are slightly larger in 289 

the nonlinear case (Fig. 2C). Also, in the nonlinear case, the interaction term INT is present. 290 

Its amplitude is much lower than the other two governing terms in the energy equation. More 291 

importantly, the TE storage term is non-zero and this will be discussed later, in Section 4. 292 

We also examine the sensitivity of the nonlinear solution to the choices of Pr and α. 293 

Additionally, we examine the impact of the nonlinearity term ε, starting with ε0=0.005 and 294 

modifying this value by ±25%. Nonlinear effects have the lowest impact on variability in the 295 

ensemble of 27 solutions of the weakly nonlinear Prandtl model when compared to the other 296 

two governing parameters (Fig. 2D-F). The general behavior of the nonlinear solution is 297 

similar to that of the linear solution, except that the maximum        (and the corresponding 298 

maximum KE) is moderately reduced for larger slopes (while the maximum      is constant; 299 

cf. Fig. S3.1 A,E vs. Fig. S3.2 B-F). This aspect of the low-level jet in the nonlinear solution 300 

is shared by LES simulations in e.g., Grisogono and Axelsen (2012) and will be explored in 301 

future studies. The increase in ε reduces all three heights (Fig. 2D-F) and amplitudes of the 302 

maximum wind speed and KE (Fig. S3.1-B,F). 303 

 304 

3.2 Anabatic flow 305 

 306 

 In this subsection we present a general overview of anabatic flow solutions from the 307 

linear and weakly nonlinear Prandtl model. The main difference when compared to katabatic 308 
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flow is the existence of the surface temperature surplus that induces the anabatic flow (now 309 

+6 K; cf. Defant, 1949). This change in the surface boundary condition is related to the 310 

corresponding increase in eddy heat conductivity from K = 0.06 m
2
/s to K = 3.0 m

2
/s and the 311 

increase of the nonlinearity parameter from ε = 0.005 to ε = 0.03, as explained in Grisogono 312 

et al. (2015): since max(ε)~γ hP/ |C|, then εAnabatic/εKatabatic ~ (KAnabatic/KKatabatic)
1/2

. With this 313 

choice of ε, perturbations to the linear solution are present, but the general structure of the 314 

solution does not change. Although anabatic upslope winds are generally deeper than typical 315 

katabatic flows, in our comparisons the same amplitude of potential temperature deviations at 316 

the surface is set so that the same potential energy of the slope flow PE is found at the 317 

surface. This is also reflected in the similar range of amplitudes of the analyzed measures in 318 

subsections 3.1 and 3.2, but for anabatic flow the maximum values of the analyzed heights are 319 

typically an order of magnitude larger. 320 

 321 

(a) Linear case 322 

 323 

The vertical profiles of the upslope wind     , potential temperature deviations     , 324 

KE, PE and TE, and, finally, the terms in the total energy equation related to diffusion DIF, 325 

dissipation DIS and local storage ∂TE/∂t of TE are shown in Fig. 3 A-C. All vertical profiles 326 

are equivalent to their katabatic counterpart in terms of the general structure (cf. Fig. 1). The 327 

sensitivity of the low-level jet height, the level where the change in the local static stability 328 

occurs, and the level where KE starts to dominate over PE are equivalent to those in the linear 329 

katabatic case (cf. Fig. 1 D-F vs. Fig. 3 D-F). 330 

 331 

(b) Nonlinear case 332 

 333 

 The nonlinear solution of anabatic flow is described in this subsection. When 334 

compared to its katabatic counterpart, the vertical profiles of along-the-slope wind speed and 335 

potential temperature have the same general structure and this is also the case for kinetic, 336 

potential and total energy of the nonlinear vs. linear solution. However, all three energy 337 

components (KE, PE and TE) are increased in the nonlinear anabatic solution, when compared 338 

to the linear solution (Fig. 4B). This is a consequence of the increased wind speeds (in 339 

absolute terms) and increased potential temperature of anabatic flow (Fig. 4A). As for the 340 

linear case of anabatic flow, the nonlinear anabatic flow is extended over a deeper layer, so 341 

both the low-level jet and inversion height are higher than in the corresponding katabatic 342 
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flow. As discussed later, the increase in the basic ε up to ε0 = 0.03 is the reason for the 343 

substantial rise in the magnitude of the interaction INT and total energy TE local storage terms 344 

∂TE/∂t (Fig. 4C). In contrast to katabatic flow, the TE diffusion DIF now departs from the 345 

dissipation DIS towards lower values. Also, while in katabatic flow the small amplitude of 346 

INT and the imbalance between DIF and DIS makes ∂TE/∂t become non-zero, in anabatic 347 

flow it is the sign and amplitude of the interaction term INT that dominates the production of 348 

TE. 349 

 The sensitivity of the selected height measures to Pr and slope angle is the same as for 350 

the linear anabatic case (and also for both katabatic types of solutions; Fig. 4 D-F). The main 351 

difference is found concerning the selection of ε. In contrast to the katabatic nonlinear case, in 352 

the anabatic nonlinear case the increase in ε leads to: (1) a rise in the low-level jet height and 353 

speed (Fig. 4D), (2) a rise in the inversion height (in anabatic flow a transition occurs from 354 

statically unstable to stable conditions) that is not substantial for the selected range of control 355 

parameters (Fig. 4E), (3) low sensitivity of the height where KE dominates over PE to the 356 

nonlinearity parameter ε (which can be neglected for the purposes of this study; Fig. 4F). 357 

 Common to all previous solutions, while the maximum in KE is attained at levels of 358 

maximum along-the-slope wind speed, KE becomes larger than PE above this level of 359 

maximum KE (cf. Fig. 4F vs. Fig. 5D). At the same time, the amplitude at which KE starts to 360 

dominate increases slightly as the slope increases (Fig. S3.1-H). The increase in ε also 361 

increases the amplitude of KE where it becomes larger than PE (in contrast to katabatic 362 

nonlinear flow), and this sensitivity to ε is comparable to the sensitivity to the slope angle α 363 

(Fig. S3.1-H). In summary, KE dominates over PE above hpcos
-1

[1/(1+Pr)
1/2

] and this height 364 

is usually between hj and 2 hj. It is related to the corresponding gradient Richardson number, 365 

which compares the vertical gradients of PE vs. KE.  When the Richardson number falls 366 

substantially below 1, dynamic instabilities might occur in the corresponding sublayer (see 367 

also Supplementary Materials 2). 368 

 369 

3.3 Energetics: katabatic and anabatic flows 370 

 371 

The potential energy maximum (PEmax) and total energy maximum (TEmax) are 372 

found at the lowest level in linear and nonlinear solutions for both anabatic and katabatic 373 

flows (insensitive to the choice of α, Pr and ε). Also, the amplitude of PEmax and TEmax 374 

equals 215.4 J/kg in all cases (Fig. 1-4, panel B). The same amplitude of PEmax and TEmax 375 
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in both katabatic and anabatic flows is a result of the same temperature anomaly at the surface 376 

(but with a different sign, i.e.,-/+ 6 K in this study). 377 

At the same time, the kinetic energy maximum (KEmax) is sensitive to choices in our 378 

parameter space and set of solutions (Fig. 5). The height of KEmax (equivalent to the low-379 

level jet height hj) increases when Pr varies from Pr=1.5 to Pr=2.5, and it decreases when |α| 380 

is increased (Fig. 5A-D). In the case of katabatic flow, the height of KEmax is within a similar 381 

range for both the linear (Fig. 5A) and nonlinear case (the solutions are only slightly sensitive 382 

to ε; Fig. 5B). In the case of anabatic flows, a similar structure of solutions is found, only over 383 

deeper layers than for katabatic flows (Fig. 5C). While all solutions behave in a consistent 384 

way with respect to Pr and α, there is a contrasting response to the increase in ε in nonlinear 385 

solutions: as ε is increased, the height and amplitude of KEmax reduce in katabatic flow (Fig. 386 

5B,F), while they rise in anabatic flow (Fig. 5D,H). The latter contrast occurs because the 387 

low-level jet height and amplitude, i.e., hj and umax, show a similar sensitivity to ε. Grisogono 388 

et al. (2015) showed that an ε increase leads to an hj and umax decrease in the nonlinear 389 

katabatic solution, and an hj and umax increase in the nonlinear anabatic solution. 390 

The amplitude of KEmax in linear solutions (both katabatic and anabatic) is the only 391 

function of the Pr (it collapses to approximately the same values for different slopes and, 392 

more interestingly, the same structure is present for both katabatic and anabatic solutions; Fig. 393 

5 E,G; for presentation purposes the lines are shifted ±0.5 from the reference slope angle). 394 

However, in the nonlinear case, sensitivity to all three parameters is present: (1) the reduction 395 

of KEmax with increasing Pr, which is classical Prandtl model behavior, (2) the reduction of 396 

KEmax when increasing α and ε in katabatic flow (Fig. 5F), as explained just above, but (3) an 397 

increase in KEmax when increasing the nonlinearity in anabatic flow (Fig. 5H). The 398 

sensitivity of KEmax to Pr and α is expected from the formulation of KEmax in the linear 399 

solution (Eq. 5) and the similarity of the linear and nonlinear vertical profiles. 400 

The diffusion maximum (DIFmax) and dissipation maximum (DISmax) are found at 401 

the surface level in linear and nonlinear solutions for both anabatic and katabatic flows 402 

(insensitive to the choice of α, Pr and ε). This is the simple consequence of the more intense 403 

wind and temperature vertical changes near the slope surface. In contrast to PEmax and 404 

TEmax, and similar to KEmax, the amplitude of both DIFmax and DISmax is sensitive to the 405 

Prandtl number Pr, slope angle α and the nonlinearity parameter ε: DIFmax and DISmax (1) 406 

reduce when Pr increases, (2) increase when the slope increases, and (3) are only slightly 407 

sensitive to increasing ε. DIFmax and DISmax vary in a common range in the linear and 408 

nonlinear solutions for both anabatic and katabatic flows (Fig. S3.2). 409 
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In the case of nonlinear solutions for anabatic and katabatic flow, the additional 410 

interaction term is present. Both the amplitude and height of the interaction term maximum 411 

INTmax are functions of all three parameters (see Fig. 6 A,B for INTmax height and Fig. 6 E,F 412 

for INTmax amplitude). The sensitivity of the amplitude and height of INTmax shows a 413 

behavior similar to KEmax: in katabatic flow, the height of INTmax varies from ~3 m to ~5 414 

m, while in anabatic flow from ~28 m to ~43 m. Also, INTmax varies from ~1∙10
-3

 J/kg/s to 415 

~4∙10
-3

 J/kg/s in katabatic flow, while it is negative and varies from ~ -0.22 J/kg/s to ~ -0.04 416 

J/kg/s in anabatic flow. Also, by examining the maximum of the triple product in INT (Eq. 3), 417 

one can estimate the height where INTmax occurs: this is approximately 4/9 hj (this result can 418 

be derived by using the linear solutions to find numerically the local maximum of the triple 419 

product; a more precise estimation would include the use of the nonlinear solutions uNOLIN and 420 

θNOLIN). This means that INTmax, i.e., the maximum of the slope-normal transport of potential 421 

energy, occurs at about ½ hj, which is one of the new results of this study. 422 

The last quantity examined in this subsection is the tendency of total energy ∂TE/∂t. In 423 

linear solutions for anabatic and katabatic flow, this quantity is zero, reflecting the stationarity 424 

of our solutions by definition. However, in nonlinear solutions, the diffusion, dissipation and 425 

interaction terms do not balance, so ∂TE/∂t can attain non-zero values. For nonlinear katabatic 426 

flow, and based on the specific selection of model parameters, maximum values of ∂TE/∂t 427 

range from ~0.01 J/kg/s to ~0.07 J/kg/s at heights reaching from ~3 m to ~5 m (Fig. 6C,G). 428 

The amplitude/height of maximum ∂TE/∂t in the katabatic solution decreases/increases with 429 

increasing Pr, increases/decreases with increasing α (because |INT| ~|α|), and 430 

increases/decreases with increasing ε (Fig. 6C,G). For the nonlinear anabatic flow, maximum 431 

values of ∂TE/∂t range from ~0.03 J/kg/s to ~0.15 J/kg/s at heights ranging from ~30 m to ~45 432 

m (Fig. 6D,H). The amplitude and height of maximum ∂TE/∂t in the anabatic solution behave 433 

in a similar manner as in their katabatic counterpart (Fig. 6D,H). The only difference is found 434 

for the case of the height of maximum ∂TE/∂t, where now an ε increase is linked with a 435 

∂TE/∂t increase. Again, non-zero profiles of ∂TE/∂t, due to nonlinearity, imply that the 436 

stationarity of solutions is not satisfied, and depends on the joint effect of DIF, DIS and INT 437 

terms.  438 
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4 Discussion 439 

 440 

In this section, we briefly discuss some of the results where references to LES studies 441 

and the issue of the non-stationarity present in our weakly nonlinear solutions are addressed. 442 

The reduction of hj with an increasing slope is a well-known feature of katabatic flows 443 

(in both LES results and the Prandtl model, see e.g., Grisogono and Axelsen, 2012). Also, 444 

with increasing Pr, katabatic flow is characterized by an increase in the momentum mixing 445 

when compared to the heat mixing, pushing and spreading the low-level jet upwards. At the 446 

same time, the maximum      is insensitive to the choice of slope angle but reduces for 447 

increasing Pr (Fig. S3.1-A; cf. Grisogono and Axelsen, 2012). However, in LES simulations 448 

(in contrast to the classical Prandtl model) the maximum u reduces with an increasing slope 449 

angle. This is also found in the nonlinear solution of our extended Prandtl model. Future 450 

studies may explore the behavior of the LES and nonlinear solutions in detail. 451 

Conceptually, there are no crucial differences (besides the vertical extent) in KE, PE 452 

and TE in anabatic and katabatic flows, since all energy measures are quadratic quantities and 453 

the same amplitude of the temperature deficit/surplus is set as a lower boundary condition. 454 

For both the anabatic and katabatic nonlinear solutions, variability due to perturbations in ε is 455 

lower than variability due to the Pr and α. The actual range of ε is discussed in detail in 456 

Grisogono et al. (2015; their subsection 2.3). In short, the value of ε should not introduce first-457 

order corrections that modify the general structure of the zero-order solutions, and this is also 458 

confirmed by our study in terms of TE, PE and TE. 459 

Another important difference between the linear and nonlinear katabatic (and anabatic) 460 

solutions is the non-zero ∂TE/∂t in the nonlinear case. In terms of the interaction between 461 

wind speed and potential temperature with the background atmosphere, the absolute value of 462 

the interaction term, i.e., |INT| decreases with increasing Pr. This indicates a weaker coupling 463 

between the turbulent mixing of momentum and heat, i.e., a decrease of the slope-normal 464 

transport of potential energy; hence, the covariance between wind speed and temperature in 465 

INT weakens (note that the latter term is made of a triplet product). At the same time, as |INT| 466 

decreases with increasing Pr, ∂TE/∂t also weakens with increasing Pr. The existence of non-467 

zero ∂TE/∂t in the nonlinear solution indicates deviations from stationarity of the total energy 468 

in the system, and reflects a leakage of energy from the background atmosphere to slope 469 

flows. It may be expected that in a more realistic flow there would be interplay among the 470 

energy terms, yielding a quasi-periodic behavior and generation of waves (most jets are 471 

unstable to small perturbations). In a more realistic model, which would allow not only for 472 
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time dependency but also for vertical velocity - pressure covariance, the kind of imbalance 473 

that we found in this study would immediately generate wave-like perturbations (e.g., 474 

Largeron et al., 2007; Stiperski et al., 2007; Zhong and Whiteman, 2008; Axelsen, 2010; Sun 475 

et al., 2015). Furthermore, this suggests that an extended and more comprehensive model than 476 

that presented in Grisogono et al. (2015) should allow for time dependency and/or velocity - 477 

pressure covariance. Also, slight to moderate imbalance among the energy terms in this 478 

nonlinear model may suggest that there is perhaps no real steady-state nonlinear slope flow; 479 

thus, excursions from pure steadiness could occur in nonlinear thermally driven flows. To add 480 

a point, Axelsen (2010; his Figs. 3.5 and 3.6) shows with an LES that pure katabatic flow is 481 

unsteady even under idealized conditions (constant slope, etc.). In his idealized simulation, 482 

internal and external gravity-wave modes are launched from the low-level katabatic jet. In 483 

short, the existence of non-stationarity in the nonlinear solution may reflect real non-484 

stationarity in nonlinear models, LES simulations and observations, and/or limitations in the 485 

extended Prandtl model, where for the latter an inclusion of the additional nonlinear term in 486 

the momentum equation might close the energy budget. Again, this will require future study.  487 

 Lastly, the question is how the results of this study are comparable to the real 488 

atmosphere. While high-resolution observations over long gentle slopes and specific 489 

background atmospheric conditions are hard to acquire, we estimate KE, PE and TE from the 490 

PASTEX-94 observations of glacier wind (van den Broeke, 1997a, 1997b; Oerlemans and 491 

Grisogono, 2002; Fig. S3.3). These results should only be considered indicative, but they do 492 

show the dominance of PE near the sloped surface, and the elevated maximum of KE, 493 

followed by the level where KE starts to dominate over PE (Fig. S3.3-B): all in accordance 494 

with our analysis of linear and nonlinear energetics of the (extended) Prandtl model. 495 

Interestingly, for this observation case DIF and DIS do not balance either, so non-zero ∂TE/∂t 496 

is found (Fig. S3.3-C). The latter result suggests the existence of either nonlinear effects or 497 

other important processes in the real atmosphere, which are not taken into account in our 498 

model. However, for stronger claims and conclusions, much larger observational datasets 499 

need to be analyzed and a more comprehensive evaluation must be performed.  500 
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5 Summary and conclusions 501 

 502 

In this study, we have evaluated the energetics of the linear and weakly nonlinear 503 

solutions of the (extended) Prandtl model from Grisogono et al. (2015). From an ensemble of 504 

solutions where three controlling parameters were perturbed (i.e., the Prandtl number Pr, the 505 

slope angle α and the nonlinearity parameter ε), KE, PE and TE profiles were estimated for 506 

both katabatic and anabatic flows. Also, the governing terms in the prognostic total energy 507 

equation were examined in four groups of solutions (linear/nonlinear, katabatic/anabatic). 508 

The nonlinearity effect induced small to moderate variations in the total energy TE. 509 

These variations caused the non-stationarity of TE, which is in conflict with the initially 510 

assumed stationarity of along-the-slope wind speed and potential temperature. This suggests 511 

the need for joining nonlinear and time-dependent effects in katabatic/anabatic flow as a way 512 

of circumventing the limitations of the weakly nonlinear Prandtl model as developed by 513 

Grisogono et al. (2015). At the same time, the maximum of the wind speed (and kinetic 514 

energy) in the nonlinear solution is found to be sensitive to the slope angle (this is not present 515 

in the linear solution), and is in this way comparable to LES simulations in e.g., Grisogono 516 

and Axelsen (2012). Since the time-dependent solution to the linear Prandtl model is already 517 

quite complicated (e.g., Zardi and Serafin, 2014; Grisogono, 2003), it seems unlikely that a 518 

corresponding weakly nonlinear time-dependent analytic solution to the problem could be 519 

found in an elegant form. Yet, there are indications that there might be no steady-state 520 

nonlinear solution to thermally driven slope flows (Axelsen, 2010), which agrees with our 521 

findings. 522 

We have limited our analysis to the energy terms and prognostic total energy equation 523 

of the mean slope flow only. It is shown that the strongest interaction between the θ- and u- 524 

profiles occurs at a height of around 4/9 hj, with hj= π/4 hp, i.e., about half the height of the 525 

low-level jet. Moreover, kinetic energy dominates over potential energy above hpcos
-526 

1
[1/(1+Pr)

1/2
], which is typically between hj and 2 hj. Thus this is the sublayer where dynamic 527 

instabilities might occur. It is directly, although nonlinearly, related to the corresponding 528 

gradient Richardson number, which compares the differential change of potential energy vs. 529 

kinetic energy of the flow. This number falls significantly below 1 in that sublayer. However, 530 

the height where KE starts to dominate over PE is not the height of the maximum KE. The 531 

latter is trivially the same as the height of the low-level jet, and always below the height 532 

where KE>PE.   533 
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A more complete energy framework would include an estimation of the potential and 534 

kinetic energy contributions from the basic state, turbulence and possibly mesoscale 535 

components (e.g. waves) in the system. Since there is still no satisfactory approach that would 536 

include the effects of sub-grid slope flows in the form of parameterizations in mesoscale and 537 

large-scale weather and climate models, greater effort should be made in order to increase the 538 

applicability of these types of models in complex orography regions (e.g., Bornemann et al., 539 

2010).  540 

Finally, the results of our simple small-ensemble exercise may be compared with 541 

observations (where care is needed to ensure high-resolution measurements in order to 542 

correctly estimate the first and second vertical derivatives in the total energy equation). A 543 

second approach to an independent evaluation of our analytical model includes the 544 

construction of the total energy budget from an ensemble of LES simulations (e.g., Grisogono 545 

and Axelsen, 2012), where non-stationarity and energetics of katabatic and anabatic flows can 546 

be further explored. 547 
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Acknowledgments 549 

 550 

The authors wish to thank the reviewers and the editor for providing detailed and constructive 551 

comments that have substantially improved the initial versions of the paper. I.G. was 552 

supported by the Croatian Science Foundation, CARE project, No. 2831; I.M., Ž.V. and B.G. 553 

were supported by the Grant Agency of the Czech Republic under the GAČR project 14-554 

12892S and by the Croatian Science Foundation, CATURBO project, No. 09/151.  555 Provisional



20 
 

References  556 

 557 

1. Axelsen, S. L. (2010). Large-eddy simulation and analytical modeling of katabatic 558 

winds. PhD dissertation, IMAU, Utrecht univ., the Netherlands, 164 pp. ISBN 978-90-559 

393-5256-4. 560 

2. Bender, C.M., Orszag, S.A. (1978) Advanced Mathematical Methods for Scientists and 561 

Engineers. McGraw-Hill Book Company, pp. 593. 562 

3. Bornemann, J., Lock, A., Webster, S., Edwards, J., Weeks, M.,Vosper,S., Derbyshire. S. 563 

(2010). Understanding cold valleys in convective scale models. 32
nd

 EWGLAM and 17
th 564 

SRNWP meetings (URL: srnwp.met.hu/Annual_Meetings/2010/ accessed on 07-01-565 

2016)  566 

4. van den Broeke, M. R. (1997a). Structure and diurnal variation of the atmospheric 567 

boundary layer over amid-latitude glacier in summer. Boundary-Layer. Meteorol., 83, 568 

183-205. 569 

5. van den Broeke, M. R. (1997b). Momentum, heat and moisture budgets of the katabatic 570 

wind layer over amid-latitude glacier in summer. J. Appl. Meteorol., 36, 763-774. 571 

6. Burkholder, B. A., Shapiro, A., and Fedorovich, E. (2009). Katabatic flow induced by a 572 

cross-slope band of surface cooling. Acta Geophys., 57, 923-949. 573 

7. DeCaria, A. J. (2007). Relating static energy to potential temperature: A caution. J. 574 

Atmos. Sci., 64, 1410-1412. 575 

8. Defant, F. (1949). Zur theorie der Hangwinde, nebst bemerkungen zur Theorie der 576 

Berg- und Talwinde. Arch. Meteor. Geophys. Biokl. Ser., A1, 421-450.  577 

9. Fedorovich, E., and A. Shapiro (2009a). Structure of numerically simulated katabatic 578 

and anabatic flows along steep slopes. Acta Geophysica, 57, 981-1010. doi: 579 

10.2478/s11600-009-0027-4 . 580 

10. Fedorovich, E., and A. Shapiro (2009b). Turbulent natural convection along a vertical 581 

plate immersed in a stably stratified fluid. J. Fluid Mech., 636, 41-57. doi: 582 

10.1017/S0022112009007757 . 583 

11. Fernando, H., Pardyjak, E., Di Sabatino, S., Chow, F., De Wekker, S., Hoch, S. et al 584 

(2015). THE MATERHORN - Unraveling the Intricacies of Mountain Weather. Bull. 585 

Amer. Meteor. Soc., 96, 1945-1967.  586 

12. Grachev, A. A., Leo, L. S., Di Sabatino, S., Fernando, H. J. S., Pardyjak, E. R., Fairall, 587 

C. W. (2015). Structure of turbulence in katabatic flows below and above the wind-588 

speed maximum. Boundary-Layer Meteorol., 159, 469-494. 589 

Provisional



21 
 

13. Grisogono, B., Jurlina, T., Večenaj, Ž., and Güttler, I. (2015). Weakly nonlinear Prandtl 590 

model for simple slope flows. Q. J. R. Meteorol. Soc., 141, 883-892.  591 

14. Grisogono, B., and Oerlemans, J. (2001). A theory for the estimation of surface fluxes 592 

in simple katabatic flows. Q. J. R. Meteorol. Soc., 127, 2725-2739. 593 

15. Grisogono, B. (2003). Post-onset behaviour of the pure katabatic flow. Boundary-Layer 594 

Meteorol., 107, 157-175. 595 

16. Grisogono, B., and Axelsen, S. L. (2012). A note on the pure katabatic wind maximum 596 

over gentle slopes. Boundary-Layer Meteorol., 145, 527-538. 597 

17. Holtslag, A. A. M., Svensson, G., Baas, P., Basu, S., Beare, B., Beljaars, A. C. M. et al 598 

(2013). Stable atmospheric boundary layers and diurnal cycles: challenges for weather 599 

and climate models. Bull. Amer. Meteor. Soc., 94, 1691-1706. 600 

18. Largeron, Y., Staquet, C., and Chemel, C. (2010) Turbulent mixing in a katabatic wind 601 

under stable conditions. Meteorol. Z., 19, 467-480. 602 

19. Mahrt, L. (1998). Stratified atmospheric boundary layers and breakdown of models. 603 

Theoret. Comput. Fluid Dyn., 11, 263-279. 604 

20. Mahrt, L. (2014). Stably stratified atmospheric boundary layers. Annu. Rev. Fluid 605 

Mech., 46, 23-45. 606 

21. Mauritsen, M., Svensson, G., Zilitinkevich, S. S., Esau, I., Enger, L. and Grisogono, B. 607 

(2007). A total turbulent energy closure model for neutrally and stably stratified 608 

atmospheric boundary layers. J. Atmos. Sci., 64, 4113-4126. 609 

22. Oerlemans, J., and Grisogono, B. (2002).Glacier wind and parameterization of the 610 

related surface heat flux. Tellus, 54A, 440-452. 611 

23. Poulos, G., and Zhong, S. (2008). An observational history of small-scale katabatic 612 

winds in mid-latitudes. Geography Compass, 2, 1798-1821. 613 

24. Prandtl, L. (1942) Führer durch die Strömungslehre. Vieweg and Sohn, Braunschweig, 614 

648 pp. 615 

25. Princevac, M., and Fernando, H. J. S. (2007). A criterion for the generation of turbulent 616 

anabatic flows. Phys. Fluids., 19, 105102 617 

26. Sandu, I., Beljaars, A., Bechtold, P., Mauritsen, T., and Balsamo, G. (2013). Why is it 618 

so difficult to represent stably stratified conditions in numerical weather prediction 619 

(NWP) models? J. Adv. Model. Earth Syst., 5, 117-133. 620 

27. Shapiro, A., and Fedorovich, E. (2008). Coriolis effects in homogeneous and 621 

inhomogeneous katabatic flows. Q. J. R. Meteorol. Soc., 134, 353-370. 622 

Provisional



22 
 

28. Shapiro, A., Burkholder, B., and Fedorovich, E. (2012). Analytical and numerical 623 

investigation of two-dimensional katabatic flow resulting from local surface cooling. 624 

Boundary-Layer Meteorol.,145, 249-272. 625 

29. Shapiro, A., and Fedorovich, E. (2014). A boundary-layer scaling for turbulent katabatic 626 

flow. Boundary-Layer Meteorol., 153, 1-17. 627 

30. Skyllingstad, E. D. (2003). Large-eddy simulation of katabatic flows. Boundary-Layer 628 

Meteorol., 106, 217-243. 629 

31. Smith, C. M., and Skyllingstad, E. D. (2005). Numerical simulation of katabatic flow 630 

with changing slope angle. Monthly Weather Review, 133, 3065-3080. 631 

32. Smith, C. M., and Porté-Agel, F. (2013). An intercomparison of subgrid models for 632 

large eddy simulation of katabatic flows. Q. J. R. Meteorol. Soc., 140, 1294-1303. 633 

33. Stiperski, I., Kavčič, I., Grisogono, B., and Durran, D. R. (2007). Including Coriolis 634 

effects in the Prandtl model for katabatic flows. Q. J. R. Meteorol. Soc., 133, 101-106. 635 

34. Sun, J., Nappo, C.J., Mahrt, L., Belušić, D., Grisogono, B., Stauffer, D.R. et al (2015). 636 

Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. 637 

Geophys., 53, 956-993. 638 

35. Zammett, R. J., and Fowler, A. C. (2007). Katabatic winds on ice sheets: A refinement 639 

of the Prandtl model. J. Atmos. Sci., 64, 2707-2716. 640 

36. Zardi, D., and Serafin, S. (2014). An analytic solution for time-periodic thermally 641 

driven slope flows. Q. J. R. Meteorol. Soc., 141, 1968-1974. 642 

37. Zardi, D., and Whiteman, C.D. (2013) Diurnal mountain wind systems. In Mountain 643 

Weather Research and Forecasting, Chow, F.K., de Wekker, S.F.J., Snyder, B.-J. 644 

(eds.), Springer: Dordrecht, Netherlands, 35–119 (750 pp.). 645 

38. Zhong, S., and Whiteman, C. D. (2008). Downslope flows on a low-angle slope and 646 

their interactions with valley inversions. Part II: numerical modeling. J. Appl. Meteor. 647 

Climatol.,47, 2039-2057. 648 

Provisional



23 
 

Figures 649 

 650 

 651 

 652 

Fig. 1: Vertical profiles of potential temperature   and wind speed u in the linear solution of 653 

the Prandtl model for the katabatic flow (A), corresponding kinetic energy KE, potential 654 

energy PE and total energy TE (B), and diffusion DIF, dissipation DIS and storage terms 655 

∂TE/∂t (C).The height of the low-level jet hj (D), height of the stability change (E) and height 656 

at which KE becomes larger than PE (F) as function of Prandtl number Pr (x axis) and slope 657 

angle α (different color). Heights in panels D-F are relative to the reference heights hREF from 658 

the solutions when Pr = 2 and α = -0.1 rad. 659 Provisional
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 660 

 661 

 662 

Fig. 2: Differences between nonlinear and linear (Fig. 1) solutions of the (extended) Prandtl 663 

model (cf. Grisogono et al., 2015). Panels D to F are equivalent to panels D to F in Fig. 1. 664 

Also, sensitivity to the nonlinearity parameter ε (with increasing line thickness as ε is 665 

increased) is included in panels D to F, while panel C includes the vertical profile of the 666 

interaction term INT that is equal to zero in the linear case. The reference heights hREF are 667 

based on the solutions when Pr = 2, α = -0.1 rad and ε = 0.005. 668 
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 669 

 670 

 671 

Fig. 3: Same as Fig. 1 but for anabatic flow. 672 
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 673 

 674 

Fig. 4: Same as Fig. 2 but for anabatic flow and ε = 0.03. 675 
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 676 

Fig. 5: The height of the maximum of kinetic energy KE (panels A to D) and the maximum 677 

KE value (panels E to H) for katabatic (panels A-B and panels E-F) and anabatic (panels C-D 678 

and panels G-H), linear (panels A,C,E,G) and nonlinear (panels B,D,F,H) cases. Selected 679 

measures are determined as functions of the Prandtl number Pr (x axis), slope angle α 680 

(different line color) and nonlinearity parameter ε (different line thickness) in the case of 681 

nonlinear solutions. Heights in panels A-D are relative to the corresponding hREF. For 682 

presentation purposes, the lines in panels E-H are shifted ±0.5 from the referentce α = -0.1 683 

line (otherwise, exact overlap is present in panels E and G, and approximate overlap is present 684 

in panels F and H). 685 
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 686 

Fig. 6: The height of the maximum of the interaction term INT (panels A-B), the height of the 687 

maximum of the storage term ∂TE/∂t (panels C-D), the maximum INT value (panels E-F) and 688 

the maximum ∂TE/∂t value (panels G-H) for katabatic (panels A,C and panels E,G) and 689 

anabatic (panels B,D and panels F,H) nonlinear cases. Selected measures are determined as 690 

functions of Prandtl number Pr (x axis), slope angle α (different color) and nonlinearity 691 

parameter ε (different line thickness). Values in panels are relative to the corresponding hREF 692 

(panels A-D), INTREF (panels E-F) and ∂TE/∂tREF (panels G-H).  693 
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Supplementary Materials 1 694 

Motivation for the use of the regular perturbation method 695 

 696 

The aim of this supplement is to briefly present the motivation and steps in the regular 697 

perturbation method applied to the equations describing katabatic flow in the main body of 698 

the paper. 699 

The use of regular perturbative methods is found in classical textbooks and papers 700 

dealing with nonlinear equations in geophysical problems. For example, Pedlosky (1987; his 701 

pg. 203 and pg. 213): expands wind and potential temperature fields as              702 

as our               … (with all quantities as defined in the main body of this paper). 703 

Also, Gossard and Hooke (1979, their pg. 16) define parameter ε as „ … ordering parameter 704 

proportional to the deviation from the zero-order state… “, and expand all fields J (their pg. 705 

66) as                , while they also state explicitly that the resulting perturbation 706 

equations do not change the important hydrodynamic results by using this expansion. Similar 707 

expansions are also found in standard textbooks, e.g., Holton (1992, his pg. 119)      708 

                 , which is a simplified version of the Gossard and Hooke approach 709 

        note that the latter summation of the perturbed and basic state is the typical 710 

simplification when linearizing a certain problem. 711 

 712 

We can reach Eq. 2 in the main body of the paper in the following two steps: 713 

 714 

Step 1 715 

 716 

The Reynolds averaged thermodynamic equation (TDE) intended for the atmospheric 717 

boundary layer (ABL) is given in e.g., Holton (1992, Eqn. 5.12). Its 2D form in the standard 718 

(X,Z) frame (with corresponding (U,W) velocity components) is thus: 719 

 
 

  
  

 

  
  

 

  
     

      

  
  

 

  
            

 

  
             , (S1.1) 720 

The averaging bar is not written over the mean variables, only over the covariances of 721 

fluctuations. Assuming now a horizontally homogeneous potential temperature field, Eqn. 722 

S1.1 simplifies to 723 

 
 

  
  

 

  
     

      

  
 

 

  
            .    (S1.2) 724 
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Next, moving the 2
nd

 term on the LHS of Eq. S1.2 to the RHS and using the standard K-725 

theory modifies Eqn. S1.2 to 726 

  

  
    

      

  
 

  

  
  

 

  
  

  

  
 .     (S1.3) 727 

Note that if we performed linearization, the 2
nd

 term on the RHS would not exist. This is the 728 

main key point. Basically, the temperature field in the first bracket of the right-hand-side of 729 

Eqn. S.1.3 is simply expanded to its next perturbation term, all in accord with the regular 730 

perturbation method as shown in e.g., Gossard and Hooke (1979), Pedlosky (1987), Holton 731 

(1992) and many other textbooks. Moreover,   
      

  
 and K will be assumed as constant. 732 

 733 

Step 2 734 

 735 

The coordinate frame transformation into the tilted new frame (i.e., from (X,Z) and 736 

(U,W) to (x,z) and (     )) is done as in Denby (1999) or Stiperski et al. (2007). There, W 737 

remains the only relevant flow speed (see above S1.4). This transformation makes sense here 738 

only if the tilting angle α is reasonably small; otherwise, the original x- and z- and X- and Z- 739 

axes would be approximately equivalent from the start and both would include buoyancy and 740 

adiabatic cooling/warming. The small angle assumption also simplifies the gradients after the 741 

coordinate frame transformation. 742 

 743 

We continue with transformation          and Eqn. S1.3 becomes  744 

   

  
     

   

  
        

 

  
  

   

  
 .  S1.4 745 

Since Eqn. S1.4 is a fully nonlinear equation (coupled with the along-the-slope momentum 746 

equation), it is very difficult to solve analytically. Therefore, we perform the regular 747 

perturbation method approach and obtain a weakly nonlinear version of Eqn. 4 in the main 748 

body of this paper: 749 

   

  
      

   

  
        

 

  
  

   

  
  S1.5. 750 

Once again, as said in the beginning, we expand θ in terms of a small parameter ε, to be able 751 

to solve Eqn. 4 asymptotically together with the momentum equation in a perturbative manner 752 

(e.g., Pedlosky (1987), Bender and Orszag (1978), etc.). More details about how to specify ε 753 

for the simple slope flows addressed using the modified Prandtl model are described in 754 

Grisogono et al. (2015), and briefly in the main body of this paper. 755 
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Supplementary Materials 2 774 

 775 

Dependence of the level where KE starts to dominate over PE on the Prandtl number 776 

 777 

The level where kinetic energy KE starts to dominate over potential energy PE 778 

(relative to the height of the low-level jet hj) is in the linear case equal to 779 

        

  
 

 

 
       

 

    
  .     (S2.1) 780 

For Pr>1, Eqn. S2.1 can be expanded into 781 

        

  
 

 

 
 
 

 
 

 

   
   

 

    
 

 

     
    ,  (S2.2) 782 

while for Pr ≤ 1, Eqn. S2.1 can be expanded into: 783 

        

  
 

 

 
 
 

 
 

 

 
 

 

 
   

 

 
      ,   (S2.3) 784 

and Eqns. S2.1-3 are shown in Fig. S2.1. 785 

 786 
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Fig. S2.1: The level where kinetic energy KE starts to dominate over potential energy PE (relative to the height 787 
of the low-level jet hj) in the linear case as described by Eqn. S2.1 (green), Eqn. S2.2 (red) and Eqn. S2.3 (blue) 788 
and keeping only terms shown in these equations. 789 

This level is important because it is a sensible estimation for the layer where shear-driven 790 

instabilities may dominate the ABL flow. 791 

 Additional insights may be gained by examining the ratio of vertical gradients of PE 792 

and KE. With KE=u
2
/2 and PE=aθ

2
/2, and by applying the standard definition of the gradient 793 

Richardson number Rig=N
2
/(∂u/∂z)

2 
we obtain the following expression: 794 
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           S2.4 796 

with all other variables already defined in the main body of the paper. Eqn. S2.4 implies that a 797 

stronger vertical change of PE (or weaker vertical change of KE) is associated with the 798 

increase  of the gradient Richardson number Rig. Conversely, enhancing the vertical gradient 799 

of KE over the PE vertical gradient also translates into lowering the corresponding Rig.  800 Provisional
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Supplementary Materials 3 801 

 802 

Supplementary Figures  803 

 804 

Fig. S3.1: The maximum of the along-slope wind speed u (panels A-D) and the amplitude of 805 

kinetic energy KE when greater than the potential energy PE (i.e., KE>PE; panels E-H) for 806 

katabatic flow (panels A,B and panels E,F) and anabatic flow (panels C,D and panels G,H) in 807 

linear (panels A,C and panels E, G) and nonlinear solutions (panels B,D and panels F,H). 808 

Measures are determined as functions of the Prandtl number Pr (x axis), slope angle α 809 

(different color) and nonlinearity parameter ε (different line thickness). Heights in panels A-D 810 

are relative to the corresponding hREF and values of KEKE>PE in panels E-H are relative to the 811 

corresponding KEKE>PE,REF. For presentation purposes, lines in all panels are shifted ±0.5 812 

from the reference α = -0.1 line.  813 
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 814 

Fig. S3.2: The maximum of the diffusion term DIF (panels A-B) and the maximum of the 815 

dissipation term DIS (panels C-D) for katabatic flow (panels A,C) and anabatic flow (panels 816 

B,D) in nonlinear cases. Measures are determined as functions of the Prandtl number Pr (x 817 

axis), slope angle α (different color) and nonlinearity parameter ε (different line thickness). 818 

Values in the panels are relative to the corresponding DIFmax (panels A-B) and DISmax 819 

(panels C-D).  820 
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 821 

Fig. S3.3 Tower and balloon wind speed and potential temperature measurements from the 822 

PASTEX-94 experiment (cf. Grisogono et al., 2015) fitted to a 3
rd

 order polynomial for 823 

smoothing purposes (A). From the 3
rd

 order polynomial, kinetic KE, potential PE and total TE 824 

energies are estimated using the same finite difference schemes as used for the analytical 825 

solutions (B). Similar to (B), the diffusion DIF, dissipation DIS and local storage of TE (i.e. 826 

∂TE/∂t) are estimated (C). 827 
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