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The angle of the near-surface wind-turning in weakly stable
boundary layers
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The angle between the near-surface and geostrophic wind vector, α0, is discussed in
the light of existing and improved Ekman theory and, on the other hand, recently
obtained numerical results corroborated by some experimental data, both obtained
by other researchers. The latter results for weakly stably stratified boundary layers,
also based on large-eddy simulation (LES) data, give an angle that is about α0 ≈ 35◦.
If the Ekman theory is applied slightly above the horizontal surface z > 0, for almost
any gradually varying eddy diffusivity K(z), which is more realistic than K = const
used at z = 0 in the classic theory, a closer analytic value to α0 can be provided
(32◦ to 37◦) than that in the classic Ekman theory (45◦). Alternatively, and without
deploying the refined Ekman surface layer theory already suggested here, one may a
priori use the previously confirmed result, α0 ≈ 35◦, together with any smooth K(z)
in order to find the corresponding surface layer depth. These results, bridging the gap
between the existing theory toward fine numerical and limited experimental data,
may aid further analyses of weakly stably stratified boundary layers. The information
about the angle α0 should be considered in NWP, air-pollution, wind-energy and
climate models; otherwise, many important boundary-layer features will remain
modelled inadequately. Copyright c© 2011 Royal Meteorological Society

Key Words: eddy diffusivity; Ekman layer; meandering; surface layer; WKB theory

Received 26 March 2010; Revised 13 January 2011; Accepted 13 January 2011; Published online in Wiley Online
Library 7 April 2011

Citation: Grisogono B. 2011. The angle of the near-surface wind-turning in weakly stable boundary layers.
Q. J. R. Meteorol. Soc. 137: 700–708. DOI:10.1002/qj.789

1. Introduction

It has been generally thought and accepted that at least the
weakly stably stratified atmospheric boundary layer (SABL)
is modelled reasonably well (Nieuwstadt, 1984; Mahrt, 1998;
Zilitinkevich et al., 2002; Cuxart et al., 2006; Baklanov and
Grisogono, 2007; Mauritsen et al., 2007). However, recent
findings show a systematic lack of precision in modelling the
angle between the low-level wind and the geostrophic wind,
wrong estimates of the SABL depth, being often too high,
with a too-weak low-level jet, etc. (e.g. Nielsen and Sass,
2004; Cuxart et al., 2006; Steeneveld et al., 2008; Svensson
and Holtslag, 2009), not to mention the understanding
and modelling of the SABL itself, and its own details
(e.g. Lesieur, 1997; Mahrt, 1998; Mauritsen et al., 2007;

Grisogono and Belušić, 2008; Zilitinkevich et al., 2008;
Grisogono, 2010). This angle is important for a number of
reasons, ranging from detailed weather forecasting and wind
energy estimations, to air-pollution modelling and statistics
of cyclone lifetimes, etc. For instance, and simplified: too
small an angle may yield much too deep a boundary layer,
with consequent mixing. Nielsen and Sass (2004) and the
websites related to High Resolution Limited Area Model
(HIRLAM) reports indicate other effects of the angle on the
synoptic surface pressure, etc. At the same time, calculations
at the lowest level in our numerical models are often
questionable due to simplified lower boundary conditions
and the corresponding assumptions considered on the one
hand, and often inadequate near-surface vertical resolution
on the other (e.g. Mahrt, 1998, 2008a; Beare et al., 2006;
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Figure 1. Wind direction vs. height from a 3D simulation using the
MIUU model by Grisogono and Enger (2004), redone with a finer
vertical resolution. The constant input parameters are geostrophic wind
(8 m s−1, 270◦) and stably stratified potential temperature profile,
��/�z = 5 K km−1. The profile is taken far upstream, in a horizontally
stretched grid (vertical grid points marked by stars), several Rossby radii
of deformation from an idealized terrain. The corresponding gradient
Richardson number increases monotonically upward with its mean for the
lowest 100 m equal to 0.22; this corresponds to a weakly stratified SABL.
The SABL depth is about 200 m.

van de Wiel et al., 2007; Grisogono and Belušić, 2008). A
snapshot of a modelled profile in a weakly stratified SABL is
shown in Figure 1 (see later); this is to be distinguished from
profiles in strongly stratified SABLs (Mahrt, 1998; Mauritsen
et al., 2007; Zilitinkevich et al., 2008; Grisogono, 2010).

The analysis of Svensson and Holtslag (2009; hereafter
SH09) shows clearly that an inconsistent or even fully
incorrect representation of the near-surface momentum
profile in numerical models has a major effect on the angle
between the near-surface and geostrophic wind. This has
tremendous repercussions on the SABL depth, H, and
the cross-isobaric mass flux. In their work, SH09 use
a multitude of operational and research models vs. LES
models, as also explained clearly in e.g. Beare et al.(2006)
and Cuxart et al.(2006). They document that numerical
weather prediction (NWP) models usually give: (i) much
too deep H, (ii) excessive cross-isobaric mass flux, and
(iii) too small an angle, α0, between the near-surface and
geostrophic wind. The related errors go up to a factor of
two or three (SH09). These are serious shortcomings of
NWP and models alike, often deliberately made in order
to improve the model performances for the sake of large-
scale dynamics, such as cyclone filling (e.g. Steeneveld et al.,
2008). Since SH09 find that over 40% of the NWP and/or
research models fail to reproduce the Ekman spiral (α0

and H in particular), one may only guess which kind of
related errors, pertaining to the lack of understanding of
the ABL processes and physics of turbulence, appear in
climate models functioning at relatively coarser resolutions,
or in modelling low-level flows over complex terrain in
general. To aid the model analysis mentioned and to
corroborate results and discussion of Beare et al.(2006),
Cuxart et al.(2006) and in particular SH09, one of the
stated three issues is tackled here, i.e. the angle α0 between
the near-surface and geostrophic wind in weakly stratified
barotropic horizontal flows. The latter authors show that
the typical value of α0 is about 35◦. As an illustration of

the problem addressed, Figure 1 shows a vertical wind-
direction profile from an idealized three-dimensional (3D)
simulation using the Meteorologiska Institution, Uppsala
Universitet (MIUU) model (Grisogono and Enger, 2004;
their section 3e) with a horizontally stretched grid. Based
on this Figure, providing the angle between the geostrophic
and near-surface wind α0 = 35.8◦, this mesoscale model
(e.g. Andrén, 1990; Enger, 1990a, 1990b; Tjernström and
Grisogono, 2000) may qualify among those research models
that followed LES data closely (SH09); in fact, a version of
this Swedish model was used in the intercomparison study
by Cuxart et al.(2006). Since the SABL related to Figure 1
is obtained in a different way, i.e. starting with a stratified
environment, than that in Cuxart et al.(2006) and SH09,
who cooled from below an initially neutral ABL, it appears
that the angle α0 ∼ 35◦ is associated with a larger class of
horizontally homogeneous SABL flows.

Curiously enough, van Ulden and Holtslag (1985)
obtained similar value for α0 from the experimental data on
Cabauw tower in the Netherlands. In general, however, the
relevant observations and data analysis pertaining to α0 are
very sparse and often inadequate.

Further analysis of the angle of the near-surface wind-
turning toward the geostrophic wind, α0, in weakly stratified
horizontally homogeneous boundary layers is based on the
reasonable assumption that the ‘ordinary’ SABL can be
assessed adequately with the Ekman theory (Pedlosky, 1987;
Zilitinkevich et al., 2002; Nielsen and Sass, 2004; SH09). In
this approach, seeing a weakly stratified SABL (WSABL) as
a generalization of an Ekman layer, a barotropic neutrally
stratified layer is gradually cooled from below; this is our
WSABL prototype. The well-known 0th-order estimation
for α0, based on a constant eddy diffusivity value and
expansion only up to a first term (in fact, only a limit
value for z → 0) gives α0 equal to 45◦ (e.g. Pedlosky, 1987;
Kundu and Cohen, 2002; Nielsen and Sass, 2004; SH09).
This value, relying on the classic Ekman-layer theory, is too
large compared to the corresponding data, LES and research
numerical models (van Ulden and Holtslag, 1985; SH09).
A note of caution about Ekman-layer possible instabilities
is in order. Although, in principle, the stable Ekman layer
may be prone to the inflection point instability (e.g. Brown,
1972), this instability is progressively weaker and eventually
disappears at increasing gradient Richardson number, Ri, say
beyond Ri > 0.02 (taken over a small but finite depth) and
large Reynolds numbers, Re, especially that as in Figure 1
(the simulation goes up to 20 h and there is no sign of
any instability). Any plausible growth rates under the
corresponding positive Ri and very large Re considered by
van Ulden and Holtslag (1985), Cuxart et al.(2006), SH09,
and in our Figure 1 would appear vanishingly small or
absent. Next, neither of the recent authors reported any sign
of the inflection point instability in their WSABL studies;
hence, it is believed that this type of instability is largely
irrelevant for the range of Ri values considered here and
very high Re (say, 0.1 < Ri < 1, Re >> 105). In general,
however, this instability cannot be ruled out for all possible
WSABL flows.

There are many other important issues and effects
related to horizontally homogeneous neutral and WSABL
flows. These include, but are not limited to, unsteadiness,
baroclinicity, surface conditions, etc. MacKay (1971) studied
baroclinic effects in the Ekman-type flows; he speculated
that a smaller value than 45◦ for α0 would be obtained
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if realistic eddy diffusivity was used. Thompson (1974)
dealt with geostrophic shear effects on the near-surface
wind, and his range of values for α0 mentions 34◦. Mahrt
(1974, 1975) assessed time-dependent vertically integrated
boundary-layer flows, and advection influence. A recent
review and critique of Ekman flows is in Wyngaard
(2010).

After the background just presented, the angle α0 will
be estimated here based on: (i) the near-surface wind with
respect to the geostrophic wind, and (ii) the extended
theory for almost any gradually varying eddy diffusivity.
Within the WKB(J) theory (e.g. Bender and Orszag, 1978;
Grisogono, 1995; Grisogono and Oerlemans, 2001a, 2001b;
Parmhed et al., 2005), the angle α0 will be shown to largely
concur with that from SH09 and van Ulden and Holtslag
(1985). To reword, the angle α0 ∼ 35◦ will be estimated
analytically in this study. More importantly, deploying the
WKB† theory, additional meaning and use will be given to
this angle; this shall be accomplished by smoothly varying
eddy diffusivity. If an analytic theory can obtain a result
close to that from large-eddy simulation (LES), as will be
shown here, the result should be obtainable from our NWP
and research models, either by using a finer resolution
and/or an improved turbulence parametrization. If they
are without this capability of providing a correct α0, many
NWP models will not be able to successfully use data
assimilation pertaining to the ABL, not to mention the
important NWP applications. Overall, all types of near-
surface wind simulations and consequent uses require the
angle α0 to be modelled as correctly as possible (Nielsen
and Sass, 2004; Baklanov and Grisogono, 2007; SH09).
To add to the motivation for this study, SH09 show that
slightly over 40% of the meteorological models (8 out
of 18) used in their study cannot reproduce the Ekman
spiral and α0 appropriately (an embarrassing and annoying
fact). This paper makes a contribution by tackling the
angle α0 in the light of the corresponding and improved
Ekman theory for weakly stratified barotropic boundary
layers.

2. Analytical approach

The ‘classical’ SABL is almost always stratified weakly (i.e.
Ri << ∞, typically 0 < Ri < 1, see e.g. Mauritsen et al.,
2007; Zilitinkevich et al., 2008; Grisogono, 2010); hence, its
bulk properties have been modelled more or less adequately
during the last few decades or so. However, certain assertions
about modelling the SABL depth, the low-level jet, the near-
surface wind angle with respect to the geostrophic wind, i.e.
α0, to mention a few, call for recent and future research (e.g.
Cuxart et al., 2006; Grisogono and Belušić, 2008; SH09).
Next, we address the angle α0, the surface layer depth and
the corresponding eddy diffusivity. Finally, we shall reflect
on possible variations of α0 depending on the latter two
quantities.

†After the initials of the researchers (Wentzel, Kramers, Brillouin)
who popularized this method for solving linear ordinary differential
equations, of any order, with variable coefficients.

2.1. Refined estimation of α0

Here we assess the angle α0 whose tangent is equal to the
ratio between the two wind components:

u(z) = ug{1 − e−I(z) cos(I(z))}
v(z) = uge−I(z) sin(I(z)). (1a)

In these textbook expressions, ug is the geostrophic wind
speed, I(z) = {f /(2K)}1/2z, with f as constant Coriolis
parameter and K as eddy diffusivity (e.g. Stull, 1988; Holton,
1992). This I(z) can be interpreted as a dimensionless Ekman
layer depth, where the actual depth is normalized by the
classical Ekman layer depth (e.g. Pedlosky, 1987; Holton,
1992; Grisogono, 1995). Thus, the angle α0 is:

tan(α(z)) = v(z)

u(z)
,

tan(α0) = v0(zS)

u0(zS)
(1b)

where all the symbols have their usual meaning (e.g. Pielke,
1984; Stull, 1988); in particular v(z) is the ageostrophic
wind component, u(z) is the wind component in the
geostrophic wind direction at elevation z above the surface,
α is the angle between these components, subscript ‘s’
means a representative near-surface value which we, for
convenience, relate to the subscript zero. Within the 0th-
order Ekman classic theory (e.g. Pielke, 1984; Kundu
and Cohen, 2002; SH09), the tangent of the angle α0 is
equal to one, i.e. the idealized value for α0 is, as already
mentioned, α0 = 45◦. This is quite far away from the
observed and recent, best modelled corresponding value
in the barotropic WSABL, i.e. α0 ≈ 35◦ (SH09); therefore,
a refined analytic estimate for α0 will be sought. To repeat,
within the classic linear theory this angle from (1) becomes:

tan(α0) = Limz→0
e−I(z) sin(I(z))

1 − e−I(z) cos(I(z))

= Limz→0

{
1 − I(z) + 2I2(z)

3
+ . . .

}
= 1, (2a)

where I(z) is still simply proportional to z as in and
below Eq. (1a), and the functions involved are expanded
in their Taylor series. Since we focus on the wind direction
in the near-surface layer, not through the whole of the
boundary layer, this scaling height by (2K/f )1/2 seems
too large, thus hinting at our approach, i.e. finding a
related but refined, smaller vertical scale pertaining to the
surface layer only. In this way, one will be able to zoom
into the weakly stable surface layer (‘stable’ always means
‘stably stratified’). Note that the straightforward limit in
Eq. (2a) leads to the mentioned (too large) classic analytic
angle of α0 = 45◦. Next, we elaborate on correcting this
value.

It is more realistic, and certainly more meaningful for
NWP and numerical research models (see SH09 for the
models’ distinctions), to evaluate Eq. (2a) at a relatively
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short distance above the surface, say zS, representative for
the whole of the surface layer. Such a height should be
characterized by blended influences from the flow aloft and
the surface immediately below. Because the wind vector
at the surface, v(z = 0), or at the roughness height, does
not have a well-defined direction, due to the no-slip lower-
boundary condition where the wind speed is zero, it can
be imprecise to discuss the angle α0 between the surface
wind and geostrophic wind vector. Namely, the angle of
zero-vector is undefined by definition; it can be defined
only in the limit as z → +0, i.e. from above, but more
importantly, we never measure the corresponding surface
wind anyway. Hence, we discuss here how to determine
the angle α0 between the near-surface and geostrophic wind
vector. This effectively means expanding Eq. (2a) for a
small z bearing in mind the exact tan(α0) in Eq. (2a) is
a monotonically decreasing function through most of the
boundary layer. Since we do not have a general, well-defined
way to determine strictly the surface layer depth having
two wind components and without involving additional
assumptions (by e.g. zS ∼ 10% of H), here we define
it as the simplest first minimum of the small-argument
polynomial expansion for v0(zS)/u0(zS) in Eqs (1) and
(2). This definition, or better to say, restriction, should
also be in accord a posteriori with the usual definitions
but now involving the ageostrophic wind component
as well. Next, we shall elaborate on this surface layer
estimate.

Having f fixed, one is left with some relatively small range,
pertaining to the surface layer, for the values admitted to the
dimensionless depth I(z) = z{f /(2K)}1/2, 0 < I(z) < 1. For
a more mixed, less stratified layer, i.e. the WSABL, having
relatively larger representative K values, z may extend to
relatively higher corresponding values (always, say, up to
about 10% of the WSABL depth, H) while keeping the
ratio I(z) = {f /(2K)}1/2 within some acceptable limits to
be better defined later. On the contrary, in a progressively
more stably stratified, and thus usually less mixed SABL,
exhibiting relatively smaller K, the corresponding surface
layer must inevitably be thinner in order to keep the
ratio z{f /(2K)}1/2 within certain bounds allowed (see
below).

For typical values of K and relatively small z, e.g. zS, it has
been difficult to lower the near-surface angleα0 meaningfully
and adequately, so as to correspond to the angles occurring in
the observations and state-of-the-art numerical simulations
(van Ulden and Holtslag, 1985; SH09). The only assumption
here is that the exact ratio v0(zS)/u0(zS) in Eq. (1b) or (2a),
when taken for the small argument zS, can be approximated
by a simple polynomial expansion. Next, we focus on the
expansion in Eq. (2), beyond its constant term equal to one,
for 0 < zS << H, i.e.

tan(α0) = Limz→zS

e−I(z) sin(I(z))

1 − e−I(z) cos(I(z))

= Limz→zS

sin(I(z))

eI(z) − cos(I(z))
. (2b)

Now, after sorting out the alike terms, expanding in
both the nominator and denominator, and then using the

binomial series, one finds in terms of powers of I(z):

tan(α0) = Limz→zS

I(z) − I3(z)
3! + . . .

I(z) + I2(z) + I3(z)
3! + . . .

= Limz→zS

1 − I2(z)
6 + . . .

1 + I(z)(1 + I(z)
6 ) + . . .

= Limz→zS

{
1 − I2(z)

6
+ . . .

}

×
{

1 − I(z)(1 + I(z)

6
) + I2(z) + . . .

}

= 1 − I(zS) + 2

3
I2(zS) + . . . ≈ P2(I(zS)).

Hence,

tan(α0) ≈ P2(I(zS)) = 1 − I(zS) + 2

3
I2(zS). (2c)

This quadratic expansion P2 in terms of small I(zS) is
sufficient for our purpose, i.e. defining/restricting the surface
layer depth in order to eventually refine α0 analytically,
from being 45◦, lowering α0 closer to 35◦. Having involved
the ageostrophic wind component, the corresponding
simplest polynomial expansion P2, possessing a simple local
minimum, for the ratio v0(zS)/u0(zS) shall be minimized
because this P2 is a generally increasing function, while
the exact expression for tan(α0) in Eq. (2) is a decreasing
function. Otherwise, we need to define another measure
for how large the argument I(z) should be so that our P2

is a good approximation to the exact ratio. One simple
advantage of using P2 is to avoid multiple solutions for its
extreme (the minimum). In short, P2 is a good estimate
for α0 because P2 follows the actual ratio tan(α0) down
to its minimum, i.e. the min(P2); after this point, tan(α0)
continues to decrease while P2 begins to grow without a
bound. Therefore, we set

tan(α0) ≈ min{P2(I(zS))} = min

{
1 − I(zS) + 2

3
I2(zS)

}
,

tan(α0) ⇔ 4I(zS)

3
− 1 = 0, ⇒ min(I(zS)) = 3

4
,

tan(α0) ≈ P2(3/4) = 0.625, ⇒ α0 = 0.5586 ⇔ α0 = 32◦.

(2d)

In this way, a representative dimensionless Ekman surface
layer depth, min(I(zS)) = 0.75, is found in Eq. (2d), which
corresponds to α0,ANA = 32◦. This refined analytic estimate
for α0 is close to that in van Ulden and Holtslag (1985)
and SH09, i.e. 35◦. A critical view of the value just obtained
is in order. The absolute error pertaining to the refined
analytic estimation of α0 is more than three times smaller
than that using the classic Ekman layer theory (45◦). One
plots easily the exact ratio v0(zS)/u0(zS) from Eq. (2) and P2

from Eq. (2c) and sees the curves agree nicely, or adequately,
up to the argument about 0.4, or 0.7, corresponding to the
angle α0 ≈ 35◦, or 32◦, respectively; this means the only
assumption made, P2 being a good approximation here, is
acceptable. Since an exact limit up to which a certain series
expansion, such as P2, is a valid approximation to an exact
function, as in e.g. Eq. (2c), is more or less arbitrary, the
simple restriction, based on the simple extreme value of P2,
is deployed here.
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2.2. Improved surface layer depth

Because the obtained min(I(zS)) = 0.75 from Eq. (2d) may
seem large, the related α0,ANA = 32◦ is somewhat smaller
than the reference value from van Ulden and Holtslag (1985)
and SH09, i.e. 35◦. If the Ekman layer depth corresponds
to I(z = H) = 2π , then our newly defined surface layer
depth, min(I(zS)) = 0.75, relates to ∼12% of H, which can
only be a slight (thus quite acceptable) overestimation. (If
a particular calculation would prefer a lower dimensionless
Ekman layer depth than I(z = H) = 2π , then the related
value of I(zS) ought to be reduced accordingly.) Let us
compare the new analytic result with the classic Ekman layer
and LES results in their dimensionless form. The classic
Ekman layer (analytic) result for α0 = 45◦, when plugged
into Eq. (2), yields the dimensionless Ekman surface layer
depth either trivially equal to zero, or I(zS) = 1.5 from P2

in Eq. (2c), clearly a way too high value (zS,CLASSIC ≈ 24%
of H). When the LES result for α0 (SH09) is plugged in
there, two solutions to P2, which is a parabola, appear:
I(zS) ≈ 0.4146, and I(zS) ≈ 1.0854; each of them yields, as
expected, α0 = 35◦. Moreover, the average value of these
two latter solutions to P2 gives our min(I(zS)) = 0.75. This
gives credit to our new independent analytic estimation of
the dimensionless Ekman surface layer depth, I(zS).

Having estimated the surface layer depth I(zS), a finer
analytic revision of the angle α0 may be accomplished.
Perhaps an even more realistic value for α0 is reached if
the expansion P2 for tan(α0) in Eq. (2) is averaged over
the dimensionless surface layer depth 0 � I(zS) � 0.75. The
averaging immediately yields <P2 >= 1/(0.75) ∫ 0

0.75 P2(x)
dx = x{1 − x/2 + (2/9) · x2}/(0.75) evaluated at 0.75 (x
is a dummy variable for dimensionless depth) giving
<P2 >= 0.75; thus, α0 = (1800/π)·atan(0.75) = 36.9◦.
Note this value α0 = 36.9◦ is even slightly closer to α0 = 35◦
obtained in SH09 (than the initial α0,ANA = 32◦), and that
our analytic estimates embrace it now from below and above,
i.e. 32◦ � α0,ANA � 36.9◦.

Next, we focus on acceptable values of z and K entering
I(z), 0 < z � zS, to see how realistic surface layer estimates
are so far. If using only constant K values, KC, then
IC(zS) = {f /(2KC)}1/2zS is still inadequate, i.e. unrealistically
small in this case. In other words, when using typical constant
KC values in IC(zS), reasonable values for zS cannot be
attained. In their Fig. 9, SH09 discuss the WSABL that is
usually 180 to 400 m deep (values of H, excluding two
outliers for simplicity), the optimum depth, corresponding
to α0 ≈ 35◦, being H ≈ 200 m (also see our Figure 1).
Deploying zS ∼ 10% of H yields 20 m � zS � 40 m. For
example, using a typical set of values (f , KC, zS) = (10−4 s−1,
5 m2s−1, 30 m), one finds IC(zS) ≈ 0.1, and from Eq. (2c)
and P2(I(zS)) ensues a relatively large angle for this constant
KC, i.e. α0 ≈ 42.2◦.

One may vary this angle somewhat by lowering KC and
increasing zS values (these should stay within ordinary values
for the WSABL), but even the most optimistic estimation
can barely reach down to α0 ≈ 40◦, which is still too high, i.e.
close to 45◦. Using min(I(zS)) to adjust KC and zS also gives
barely realistic values, e.g. KC = 1 or 10 m2s−1 gives a surface
layer that is 85 or 270 m thick, respectively (f as before).
The latter example agrees with the fact that most NWP
models exaggerate H, and most likely zS as well (e.g. Cuxart
et al., 2006; Steeneveld et al., 2007; SH09). This statement
agrees with our earlier suspicion that (2KC/f )1/2 seems

too large for the near-surface scaling. Namely, the classical
Ekman layer scaling is fine from a large-scale approach,
quasi-geostrophic theory in particular (e.g. Pedlosky, 1987;
Holton, 1992), yet it is inadequate for scaling near-surface
processes (e.g. Berger and Grisogono, 1998). One concludes
that the existing theory (Pedlosky, 1987; Zilitinkevich et al.,
2002; SH09), executed for 0 < z � zS and using KC, provides
results that are somewhat closer to but still out of reach of
the LES and research models’ results. In other words, the
constant-K approach intrinsically cannot provide acceptable
α0 and zS values.

2.3. Gradually varying eddy diffusivity K(z)

Since lowering the angle α0 down from 45◦ does not allow for
realistic pairs of values for KC and zS simultaneously in the
dimensionless surface layer depth I(zS) = {f /(2KC)}1/2zS,
our next step is a deployment of gradually varying K(z)
profiles. A natural generalization of the dimensionless
Ekman layer depth, I(z) = {f /(2K)}1/2z, using a smooth
K(z) is the corresponding vertical integration; this relates to
a simplified low-order WKB method applied to the Ekman
layer. Keeping Eq. (2c) in mind and using almost any form
of reasonably smooth K(z), one extends the definition for
the dimensionless height:

I(z) =
√

f

2K
z . . . −→ . . .

√
f

2

z∫
0

dz′
√

K(z′)
(3)

which is the 0th-order WKB generalization of the exponent in
the Ekman as well as in the Prandtl layer solution (Grisogono,
1995, 2003; Grisogono and Oerlemans, 2001a, 2001b, 2002).
Hence, the primary motivation for defining now I(z) as an
integral is to obtain the 0th-order WKB approximation. An
equivalent feature to Eq. (3) is in e.g. linear wave theory,
where the dependency on the vertical wave number m,
that is exp(imz), is generalized within the WKB theory as
exp(i ∫ m(z) dz), see e.g. Nappo (2002). For simplicity we
integrate Eq. (3) from zero elevation, while in a more detailed
theory this can be readily done from a given roughness
length upwards if necessary (this does not change our main
results). To put it in a crude way, Eq. (3) allows for gradual
variations of the previously introduced I(z) = {f /(2K)}1/2z
by simply integrating K(z) vertically (Grisogono, 1995). This
is the essence of the WKB method for boundary-layer flows
(Bender and Orszag, 1978; Berger and Grisogono, 1998;
Parmhed et al., 2005). Now, various reasonably smooth
profiles may be deployed in Eq. (3), and one can estimate
the corresponding limit Eq. (2c) straightforwardly.

The choice of K(z), i.e. a large class of smooth possible
profiles, is addressed here by deploying a simple yet
generalized and quite robust form of K(z) which depends
on two input parameters only:

K(z) = K0
z

h
exp

{
−0.5

(
z
/

h
)2

}
, (4)

where K0 relates to the maximum of K(z) as max(K(z)) =
K0e−1//2 that appears at the elevation h, zS << h << H.
The latter relative relation among the heights in the
WSABL must be fulfilled for the WKB theory to hold;
details and applications are in e.g. Parmhed et al.(2004,
2005), Grisogono and Belušić (2008), Jeričević and Večenaj
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(2009) and Jeričević et al.(2010), where Eq. (4) has shown
reasonable successes in modelling various types of boundary-
layer flows. Briefly, the WKB theory requires that the
background, K(z) here, varies on a scale which is (at least
somewhat) larger than that for the calculated quantities,
i.e. u(z) and v(z); hence zS << h, or at least zS < h. Note
that Eq. (4) generalizes the O’Brien third-order polynomial
profile (O’Brien, 1970; Grisogono and Oerlemans, 2001a,
2001b; Jeričević et al., 2010); furthermore, it is probably
better than any polynomial approximation for K(z) because
of its simple analytic properties and its dependence on only
two input parameters. Some of the latter authors, as well as
Grisogono (2003), checked a couple of polynomial profiles
in similar applications, yielding most often qualitatively the
same results as with Eq. (4), but demanding more analytical
fix-up and/or additional input parameters than with using
Eq. (4). For instance, Eq. (4) needs only two input parameters
while O’Brien needs four external parameters. Finally,
Jeričević et al.(2010), using large datasets and numerical
modelling, show that Eq. (4) generally performs (at least
somewhat) better than the O’Brien profile.

Deploying Eq. (4) as a role model for eddy diffusivity
vertical profiles K(z), calculating the dimensionless height
I(z) in Eq. (3) one obtains

I(z) =
√

fh

2K0

z∫
0

exp{(z′/2h)2}dz′
√

z′ , (5)

which is in fact also a function of h and K0, but for simplicity
we assume the latter as external given parameters (see below).
Integrating Eq. (5) by parts up to zS, while observing that
z/h � zS/h < 1, one straightforwardly finds the first few,
most relevant, terms in Eq. (5). Although an infinite series
expansion as the exact solution to Eq. (5) can be written, it
suffices here to display only the dominating terms:

I(zS) ≈
√

2f

K0

√
h · zS exp

{( zS

2h

)2
}

·
{

1 − 1

5

(zS

h

)2 + . . .

}
.

(6)

The governing effect in Eq. (6) is given by the square-
root factors, while the exponential and the rightmost factor
together usually amount to up to 1% of typical values
of I(zS); hence we omit these small-correction factors in
Eq. (6) and treat it simply as I(zS) ≈ (2f h zS/K0)1/2. Note
that I(zS), based on a gradually varying K(z), is different
from that for KC.

Next, we estimate typical values of the newly expanded
I(zS) based on Eq. (6), plug it into Eq. (2c) with typical K
and zS values, and compare the angle α0 from this updated
theory to the distinct, narrow range of values from the LES
data, i.e. α0,LES, presented by SH09 and the observations by
van Ulden and Holtslag (1985). For example, starting with
a similar typical set of values as before but now adding the
height h where K0 is reached, i.e. (f , K0, h, zS) = (10−4 s−1,
5 m2s−1, 150 m, 30 m), one now obtains from Eq. (6):
I(zS) ≈ 0.425 (or 0.424 if simplified as done below Eq. (6)).
The latter value when plugged into P2 in Eq. (2d) amounts
to α0,APR ≈ 34.8◦ (or α0 = 33.7◦ based on the exact ratio in
Eq. (2)). A comment about the choice of h, i.e. the level of
max(K(z)), follows. The average value of H in SH09 is about
mean(H) ≈ 200 m, while the median is around 300 m;

based on these facts, zS used in our examples is zS ≈ 30 m.
Meanwhile, the WKB theory applied to the SABL demands
zS << h < H, or at least zS < h < H. Hence, we simply
choose here h ≈ 150 m as a suitable value.

A few tests of robustness for the analytical range of values
of α0, i.e. α0,APR, are provided next. Firstly, we should
use a somewhat higher value of K0 when comparing our
result to the KC case because the class of profiles chosen in
Eq. (4) never reaches the value of K0 but a smaller one, i.e.
K0e−1//2. Hence, let us use a doubled K0, i.e. 10 m2s−1, in
Eqs (4) and (6), the other values as in the last example; then
I(zS) ≈ 0.30 and α0,APR ≈ 37.2◦, based on the polynomial
expansion Eq. (2b), or α0 ≈ 36.8◦, from the corresponding
exact ratio. These slightly higher α0 values than those in
the previous example appear still quite acceptable for the
approximate analytical value of the wind angle α0,APR, and
certainly better ones than that obtained by using the KC

approach. Uncertainty estimations of I(zS) and the angle
α0,APR are aided by realizing and deploying the allowed
relative range of values between zS and h, see below Eqs
(4) and (5); thus Eq. (6) would be restricted to only two
variables, K0 and zS. In particular, parametrizing h = a zS

with, say, 4 � a � 6, meaning that max(K(z)) is attained
around the middle of the WSABL depth, changes Eq. (6) to:

Ia(zS) ≈
√

2af

K0
zS, (6a)

where typical acceptable variations of, say, a ≈ 5 ± 1 would
cause variations in Ia(zS) within ∼10%. Note that the
latter parametrization for h also agrees with zS ∼ H/10
while roughly h ∼ H/2. The main result of Eq. (6a),
compared to that with KC, is that it provides relatively
thinner surface layer depths, zS; these depths are supposed
to be more realistic, generally speaking, than those using
KC. Hence, Eq. (6a) represents a modified dimensionless
Ekman surface layer depth; it is by a factor of (4a)1/2 ∼ 4.5
smaller than that for the classical Ekman layer depth. For
example, the ratio between zS based on the WKB and
classic Ekman theory, both for the same I(zS), amounts
to zS,WKB/zS,C = (2a1/2)−1(K0/KC)1/2 << 1 (or at least,
zS,WKB/zS,C < 1), for all reasonable choices of a � 4 and
yet up to K0 � 15KC, depending on the particular values
chosen.

To illustrate the advantage of using K(z), as e.g. Eq. (4) or
similar, instead of KC, Figure 2 displays two idealized
estimations of the weakly stable surface layer depth, zS, based
on a chosen I(zS) = {f /(2KC)}1/2zS ≈ 0.5 (constant case,
solid) and Eq. (6a), i.e. I(zS) ≈ Ia(zS) = {2af /K0}1/2zS ≈ 0.5
(dashed or dash-dotted). For the latter cases, a = 5 and
K0 = 4KC (dashed) or K0 = 2KC (dash-dotted). The main
point here is to notice the relation between the surface
layer depth zS for constant and variable eddy diffusivity,
respectively (not to dwell on any particular idealized value
of zS even though for, say, KC < ∼5 m2s−1, zS values are very
realistic). Note that from Eq. (2c), for this chosen example,
I(zS) = 0.5, P2(0.5) ≈ 0.667, so that α0 ≈ 33.7◦ (i.e. close
to 35◦).

Obviously, even small but still constant eddy diffusivity
KC gives at least doubled surface layer depth compared to
that using K(z). Our approach is in agreement with the
surface-layer theory where also K(z) ∼ z (e.g. Stull, 1988)
while minor departures due to, e.g. stability effects (could
be included in K0 estimates), do not change our main
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Figure 2. Idealized weakly stratified surface layer depth, zS, estimated from
eddy diffusivity, based on Eq. (2) and using I(zS) = {f /(2KC)}1/2zS ≈ 0.5
(constant case, solid) and Eq. (6a), i.e. Ia(zS) ≈ {2af /K0}1/2zS ≈ 0.5
(gradually varying K(z) using Eq. (4), dashed and dash-dotted). For the
latter case, Eq. (4) is used with parametrized h = a zS, a = 5 and K0 = 4KC

(dashed) or K0 = 2KC (dash-dotted), f = 10−4s−1. Note realistic zS values
for, say, KC < ∼5 m2s−1, in this particular example.

result. The reader is reminded that many NWP models
overpredict the depth of stable surface layers (e.g. Cuxart
et al., 2006; Grisogono and Belušić, 2008; SH09; Grisogono,
2010). Finally, we discuss some of the consequences of the
analytical approach deployed above, speculate on further
applications and summarize the main steps of the paper.

3. Discussion and concluding remarks

As an alternative, Eq. (6) can be adopted for estimation
of the corresponding attributes (α0 etc.) at the convenient
lowest level wind measurement, i.e. at z10m instead of the
features at zS. Next, under certain nearly-steady WSABL
conditions assumed here, Eq. (6) could be reformulated
for estimating K0, or equivalently max(K(z)), by using
Eq. (2) and the requirement that α0 ≈ 35◦. In other
words, by going backward in our analysis, knowing the
angle and assuming the overall profile of K(z), some other
SABL characteristics can be estimated. Furthermore, using
a fine horizontal spacing in a mesoscale network, as in e.g.
Belušić and Mahrt (2008), spatial and maybe even temporal
variability of the parameters discussed here (h, K0, zS, α0)
could be assessed.

Before conclusions, a plausible discussion on variations
of the angle α0 is tackled. Temporal variations are neglected
in section 2; however, these are commonly observed in
the SABL and virtually any other ABL (e.g. Mahrt, 1974,
1998, 2008b; Stull, 1988). Forced non-stationarity in a
more advanced model than the one used here could yield
temporal variations of the angle α0. This may lead toward
the unsolved problem of flow meandering and its largely
unknown physics (Mahrt, 1998, 2008b; Belušić and Güttler,
2010). In a simplified view, meandering would be given
here by temporal variations in I(zS); as such, qualitatively
speaking, temporal variations in Eq. (6) could be foreseen
in slowly varying values of h, K0 and/or zS. In other words,
subtle variations of the surface layer height and eddy
diffusivity’s maximum value and/or its height, especially
those fluctuations in time and perhaps slightly out of phase,
will typically cause variations of I(z) in Eqs (5) and (6).
According to the polynomial approximation in Eq. (2c),
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Figure 3. Some variations affecting the angle of near-surface wind-turning:
(a) the exact argument entering Eq. (2) through Eq. (6) parametrized
via Eq. (6a) but now allowing for smooth changes in eddy diffusivity K0;
(b) the angle α0 from Eq. (2b), using the exact ratio (not its polynomial
expansion P2) as a function of Ia(K0, zS). The height of the max(K(z)) is
parametrized as in Eq. (6a) with h = a zS, a = 5; Ia(K0, zS) and α0 are
plotted for three different surface layer thicknesses: 20, 40 and 80 m (solid,
dashed and dash-dotted, respectively). The latter, deepest, surface layer
depth corresponds to a near-neutral surface layer while the former ones
relate to weakly stably stratified boundary layers (WSABL).

variations of I(zS), say δI(zS), amounting to e.g. ±30% of
I(zS), will induce variations and some sort of very weak
flow meandering at a given location within a few degrees
from an average near-surface wind direction. This is too
small a directional variation to be considered as meandering
because Mahrt (2008b) finds meandering to be directional
changes of a few tens of degrees, for wind speeds larger
than 1.5 m s−1, during typical periods of a few minutes
and longer. Nevertheless, we have not yet explored the
possibility of qualitatively finding variations of α0 due to
larger variations of I(zS) in the exact form of Eq. (2) without
using the polynomial expansion P2 for small argument.
These variations may occur even at small elevations zS if
relatively small values are allowed for K0 in Eq. (6) so that
the argument entering Eq. (2) may become large.

Possible alterations of the angle α0 caused by variations
of the surface layer depth and eddy diffusivity, zS and K0

respectively, i.e. α0(Ia(zS, K0)), are depicted in Figure 3.
While Figure 3(a) emphasizes again that small values of K0

may produce large arguments Ia, which is basically the same
as I entering Eq. (2), even for small near-surface heights zS,
Figure 3(b) shows the corresponding variations of the angle
α0, thus qualitatively generalizing the approach considered
here.

Several conclusions may be drawn from Figure 3. The
lower the near-surface elevation (relating to the near-surface
wind vector) zS, the lower the corresponding eddy diffusivity
yielding the angle α0 that approaches the correct range
around ∼35◦. Large arguments of I give very small or even
slightly negative α0, again in accord with Eq. (2); in the classic
Ekman theory, this relates to slightly negative values of the
ageostrophic wind component around the top of the (weakly
stratified) Ekman layer. If a somewhat larger/lower a value,
parametrizing the elevation of max(K(z)), were used, the
same values of α0 would be plotted for slightly smaller/larger
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heights zS in Figure 3. For the same value of zS, say 20 m,
by gradually changing 0.1 m2s−1 � K0 � 0.6 m2s−1, α0

varies from about 15◦ to 30◦. Moreover, for zS = 40 m and
0.1 m2s−1 � K0 � 0.7 m2s−1, α0 changes between 2◦ and
20◦, or if 0.3 m2s−1 � K0 � 5 m2s−1, then 10◦ � α0 � 35◦.
In a deeper, near-neutral surface layer, Figure 3(b) also
suggests the angle α0 may change appreciably as well. For
instance, for zS = 80 m, if 0.3 m2s−1 � K0 � 3 m2s−1,
then 0◦ � α0 � 20◦. If a shallower surface-layer were
considered, say, zS = 10 m, then minute changes in the
range 0.01 m2s−1 � K0 � 0.08 m2s−1, yield α0 variations
between 5◦ and 25◦ (not shown). The main point of this part
of the discussion is to offer a qualitative explanation for one
type of simplified meandering, i.e. plausible meandering
due to variations in the eddy diffusivity vertical profile
(the maximum and its height) and the surface layer
depth. Detailed dedicated measurements, similar to those
demanded by SH09, are needed in order to further qualify
or dispute this hypothesis.

To sum up, while assessing the angle of the near-surface
wind-turning in the WSABL, two main things are done
here. These are: (i) lifting the height, z > 0, where the
corresponding angle α0 is evaluated, and (ii) implementing
the eddy diffusivity as a gradually varying function of
height, K(z). If only the former ingredient is used, based on
dimensionless surface layer depth and a quadratic expansion
for tan(α0), a new analytic estimate is obtained, i.e. α0 ∼ 35◦,
but realistic input values of presumably constant K and
stably stratified surface layer depths, zS, are impossible to
combine with approximately 32◦ � α0 � 37◦. When these
two ingredients are coupled, i.e. z = zS > 0 and K(z), a
reasonable value for α0 ensues (together with realistic K and
zS values) which concurs with that in van Ulden and Holtslag
(1985) and SH09, i.e. α0 ≈ 35◦. In short and to zoom out, the
gap between classic Ekman theory, giving too large α0 = 45◦
on the one side, and LES and certain observations on the
other side, yielding α0 ≈ 35◦, is bridged by obtaining an
asymptotic theoretical value of α0 ≈ 35◦ as well. Hence, the
improved theory (i.e. lifting the height of α0 estimation, and
using smooth K(z)) adds to the current research by aiming
at finding means to reliably lower the SABL depth and its
surface layer (e.g. Cuxart et al., 2006; SH09). In this way, a
long-standing aspect of the near-surface WSABL behaviour
is further elucidated.
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